Add ports info module openscad

This commit is contained in:
redfast00 2021-08-09 10:18:09 +02:00
parent 93230c3736
commit fee25c654f
No known key found for this signature in database
GPG key ID: 5946E0E34FD0553C
3 changed files with 1557 additions and 0 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,242 @@
$fn=100;
/* portheight = 37; */
// distance between mounting holes
mounting_hole_dist=[25, 25, 22, 46];
// size of physical ports
port_sizes=[30, 30, 29 ,53];
ports = len(port_sizes);
distance_between_ports=5;
cutout_radius=100; // not a physical dimension
safe_angle=1;
eps=0.0001;
outer_radius=40; // outer radius of inner cylinder (the one with holes)
wall_thickness=2;
use <servo.scad>;
use <gears.scad>;
FUTABA_3F_SPLINE = [[5.92, 10, 1.1, 2.5], [25, 0.3, 0.7, 0.1]]; // spline of servo motor
gear_height=5;
big_gear=30;
small_gear=14;
modul=1;
gear_distance=(big_gear+small_gear)*modul/2;
clip_thickness=7;
clip_offset=5;
clip_depth=1;
cylinder_height = sum(port_sizes)+distance_between_ports*(ports + 1);
function shl(x,y) = x * pow(2,y);
function shr(x,y) = floor(x * pow(2,-y));
function sum(v, i = 0, r = 0) = i < len(v) ? sum(v, i + 1, r + v[i]) : r;
function sum_up_to(v, idx, i = 0, r = 0) = (i < idx && i < len(v)) ? sum_up_to(v, idx, i + 1, r + v[i]) : r;
module rotating_cylinder() {
echo("window size = ", 2 * (outer_radius - wall_thickness)*cos(90 + safe_angle - 360 / pow(2, ports + 1)));
difference() {
union() {
/* %translate([0, 0, cylinder_height-0.005]) small_gear_cylinder(); */
%translate([0, gear_distance, cylinder_height-0.005]) rotate([0, 0, 12.5]) {
extragear();
}
cylinder(r=outer_radius, h=cylinder_height);
}
rotate([0, 0, (360 / 2^ports)*2]) union() {
// hex hole for small gear
translate([0, 0, cylinder_height - wall_thickness -distance_between_ports - 0.05]) cylinder(r=5, h=100, $fn=6);
translate([0, 0, -eps]) cylinder(r=outer_radius-wall_thickness, h=cylinder_height - distance_between_ports + eps*2);
for (rot=[0:pow(2, ports)]) {
for (bit=[0:(ports - 1)]) {
if (shr(rot, ports - 1 - bit) % 2 == 1) {
current_height = sum_up_to(port_sizes, bit) + (bit + 1)*distance_between_ports;
translate([0, 0, current_height])
rotate([0,0,(360 / pow(2, ports))*rot])
linear_extrude(height = port_sizes[bit]) {
polygon(points=[[0,0],[cutout_radius*sin(90 + safe_angle - 360 / pow(2, ports + 1)), cutout_radius*cos(90 + safe_angle - 360 / pow(2, ports + 1))],[cutout_radius*sin(90 - safe_angle + 360 / pow(2, ports + 1)),cutout_radius*cos(90 - safe_angle + 360 / pow(2, ports + 1))]]);
}
}
}
}
}
}
}
module small_gear_cylinder() {
spur_gear(modul=modul, tooth_number=small_gear, width=gear_height, bore=1, pressure_angle=20, helix_angle=0, optimized=false);
cylinder(r=5, h=gear_height+5);
mirror(v=[0, 0, 1]) cylinder(r=5, h=wall_thickness+distance_between_ports+2, $fn=6);
}
// http://sammy76.free.fr/conseils/electronique/arduino/SG90.php
clearance=0.5;
ignore_height=4;
ignore_diameter=11.8;
extra_ignore_part=2.9;
distance_to_mount=22.7 - 15.9 - 2.5;
module container() {
translation_outer = -outer_radius - wall_thickness - clearance;
size_outer = 2*(outer_radius+wall_thickness+clearance);
module clip_hole() {
cube([clip_thickness+clearance, 100, 10+1]);
translate([0, -clip_depth-clearance, 10]) cube([clip_thickness+clearance, 100, 10+clearance]);
}
echo("height of box = ", cylinder_height + clearance + gear_height + clearance + ignore_height + distance_to_mount)
echo("width of box = ", size_outer);
difference() {
translate([translation_outer, translation_outer, 0]) cube([size_outer, size_outer, cylinder_height + clearance + gear_height + clearance + ignore_height + distance_to_mount]);
union() {
// hole for inner cylinder
translate([0, 0, -eps]) cylinder(r=outer_radius + clearance, h=cylinder_height + gear_height + clearance*2 + eps);
// hole for main cylinder shaft
translate([0, 0, cylinder_height]) cylinder(r=5+clearance/2, h=50);
// hole for gear shaft
translate([0, gear_distance, cylinder_height]) {
hull() {
cylinder(r=(ignore_diameter+clearance)/2, h=50);
translate([(ignore_diameter)/2+extra_ignore_part, 0, 0]) cylinder(r=extra_ignore_part+clearance, h=50);
}
}
// rectangular hole for motor
translate([-5.9 - clearance/2, gear_distance - 11.8/2 - clearance/2, cylinder_height + clearance + gear_height + clearance + ignore_height]) {
cube([22.5 + clearance, 11.8 + clearance, distance_to_mount]);
}
// indentations on side for clips
translate([clip_offset + translation_outer - clearance/2, size_outer/2 - wall_thickness, 0]) {
clip_hole();
}
translate([size_outer/2 -clip_offset - clip_thickness - clearance/2, size_outer/2 - wall_thickness, 0]) {
clip_hole();
}
mirror(v=[0, 1, 0]) {
translate([clip_offset + translation_outer - clearance/2, size_outer/2 - wall_thickness, 0]) {
clip_hole();
}
translate([size_outer/2 -clip_offset - clip_thickness - clearance/2, size_outer/2 - wall_thickness, 0]) {
clip_hole();
}
}
// holes on side for ports
rot = 0;
for (bit=[0:(ports - 1)]) {
current_height = sum_up_to(port_sizes, bit) + (bit + 1)*distance_between_ports;
translate([0, 0, current_height])
rotate([0,0,(360 / pow(2, ports))*rot])
linear_extrude(height = port_sizes[bit]) {
polygon(points=[[0,0],[cutout_radius*sin(90 + safe_angle - 360 / pow(2, ports + 1)), cutout_radius*cos(90 + safe_angle - 360 / pow(2, ports + 1))],[cutout_radius*sin(90 - safe_angle + 360 / pow(2, ports + 1)),cutout_radius*cos(90 - safe_angle + 360 / pow(2, ports + 1))]]);
}
}
}
}
}
module extragear() {
difference() {
spur_gear (modul=modul, tooth_number=big_gear, width=5, bore=1, pressure_angle=20, helix_angle=0, optimized=false);
servo_head(FUTABA_3F_SPLINE);
}
}
module prism(l, w, h){
polyhedron(
points=[[0,0,0], [l,0,0], [l,w,0], [0,w,0], [0,w,h], [l,w,h]],
faces=[[0,1,2,3],[5,4,3,2],[0,4,5,1],[0,3,4],[5,2,1]]
);
}
module clip(thickness=5, clip_depth=1) {
translate([0, -wall_thickness, 0]) {
translate([0, -clip_depth, 10]) prism(thickness, wall_thickness + clip_depth, 10);
cube([thickness, wall_thickness, 10]);
}
}
module container_bottom() {
size_outer = 2*(outer_radius+wall_thickness+clearance);
translate([0, -size_outer/2, 0]) {
cube([size_outer, size_outer, wall_thickness]);
}
translate([0, 0, wall_thickness]) {
translate([size_outer/2, 0, 0])
difference() {
cylinder(r=outer_radius - wall_thickness - clearance, h=distance_between_ports);
translate([0, 0, -1]) cylinder(r=outer_radius - wall_thickness*2, h=distance_between_ports+5);
}
translate([clip_offset, size_outer/2, 0]) clip(thickness=clip_thickness, clip_depth=clip_depth);
translate([size_outer - clip_thickness - clip_offset , size_outer/2, 0]) clip(thickness=clip_thickness, clip_depth=clip_depth);
mirror(v=[0,1,0]) {
translate([clip_offset, size_outer/2, 0]) clip(thickness=clip_thickness, clip_depth=clip_depth);
translate([size_outer - clip_thickness - clip_offset, size_outer/2, 0]) clip(thickness=clip_thickness, clip_depth=clip_depth);
}
holder_depth=1;
holder_width=25;
port_depth=7;
port_width = 12.5;
hole_clearance = 2.5;
translate([2*outer_radius - holder_depth - port_depth, -holder_width/2, 0])
difference() {
union() {
cube([holder_depth, holder_width, cylinder_height - distance_between_ports]);
translate([0, holder_width, 0]) cube([port_depth, 5, cylinder_height-distance_between_ports]);
translate([0, -5, 0]) cube([port_depth, 5, cylinder_height-distance_between_ports]);
}
union() {
for (bit=[0:(ports - 1)]) {
current_height = sum_up_to(port_sizes, bit) + (bit + 1)*distance_between_ports;
dist_to_hole = (port_sizes[bit] - mounting_hole_dist[bit]) / 2;
translate([-1, holder_width/2, current_height + dist_to_hole]) {
rotate([0, 90, 0]) cylinder(r=1.5, h=100);
translate([0, 0, mounting_hole_dist[bit]]) rotate([0, 90, 0]) cylinder(r=1.5, h=100);
translate([0, -(port_width) / 2, hole_clearance]) cube([100, port_width, mounting_hole_dist[bit] - 2*hole_clearance]);
}
}
translate([-(2*outer_radius - holder_depth - port_depth), -(-holder_width/2), 0]) translate([size_outer/2, 0, 0])
difference() {
cylinder(r=100, h=450);
translate([0, 0, -1]) cylinder(r=outer_radius - wall_thickness - clearance, h=500);
}
}
}
}
}
/* color([1, 1, 0]) */
translation_outer = -outer_radius - wall_thickness - clearance;
rotating_cylinder();
translate([125, 0, 0]) container();
translate([0, 130, 0]) extragear();
translate([0, 170, 0]) small_gear_cylinder();
translate([125 + translation_outer, 125, -wall_thickness]) container_bottom();

View file

@ -0,0 +1,220 @@
/**
* Parametric servo arm generator for OpenScad
* Générateur de palonnier de servo pour OpenScad
*
* Copyright (c) 2012 Charles Rincheval. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Last update :
* https://github.com/hugokernel/OpenSCAD_ServoArms
*
* http://www.digitalspirit.org/
*/
$fn = 40;
/**
* Clear between arm head and servo head
* With PLA material, use clear : 0.3, for ABS, use 0.2
*/
SERVO_HEAD_CLEAR = 0.2;
/**
* Head / Tooth parameters
* Futaba 3F Standard Spline
* http://www.servocity.com/html/futaba_servo_splines.html
*
* First array (head related) :
* 0. Head external diameter
* 1. Head heigth
* 2. Head thickness
* 3. Head screw diameter
*
* Second array (tooth related) :
* 0. Tooth count
* 1. Tooth height
* 2. Tooth length
* 3. Tooth width
*/
FUTABA_3F_SPLINE = [
[5.92, 4, 1.1, 2.5],
[25, 0.3, 0.7, 0.1]
];
module servo_futaba_3f(length, count) {
servo_arm(FUTABA_3F_SPLINE, [length, count]);
}
/**
* If you want to support a new servo, juste add a new spline definition array
* and a module named like servo_XXX_YYY where XXX is servo brand and YYY is the
* connection type (3f) or the servo type (s3003)
*/
module servo_standard(length, count) {
servo_futaba_3f(length, count);
}
/**
* Tooth
*
* |<-w->|
* |_____|___
* / \ ^h
* _/ \_v
* |<--l-->|
*
* - tooth length (l)
* - tooth width (w)
* - tooth height (h)
* - height
*
*/
module servo_head_tooth(length, width, height, head_height) {
linear_extrude(height = head_height) {
polygon([[-length / 2, 0], [-width / 2, height], [width / 2, height], [length / 2,0]]);
}
}
/**
* Servo head
*/
module servo_head(params, clear = SERVO_HEAD_CLEAR) {
head = params[0];
tooth = params[1];
head_diameter = head[0];
head_height = head[1];
//head_heigth
tooth_count = tooth[0];
tooth_height = tooth[1];
tooth_length = tooth[2];
tooth_width = tooth[3];
/* % cylinder(r = head_diameter / 2, h = head_height + 1); */
cylinder(r = head_diameter / 2 - tooth_height + 0.03 + clear, h = head_height);
for (i = [0 : tooth_count]) {
rotate([0, 0, i * (360 / tooth_count)]) {
translate([0, head_diameter / 2 - tooth_height + clear, 0]) {
servo_head_tooth(tooth_length, tooth_width, tooth_height, head_height);
}
}
}
}
/**
* Servo hold
* - Head / Tooth parameters
* - Arms params (length and count)
*/
module servo_arm(params, arms) {
head = params[0];
tooth = params[1];
head_diameter = head[0];
head_height = head[1];
head_thickness = head[2];
head_screw_diameter = head[3];
tooth_length = tooth[2];
tooth_width = tooth[3];
arm_length = arms[0];
arm_count = arms[1];
/**
* Servo arm
* - length is from center to last hole
*/
module arm(tooth_length, tooth_width, reinforcement_height, head_height, hole_count = 1) {
arm_screw_diameter = 2;
difference() {
union() {
cylinder(r = tooth_width / 2, h = head_height);
linear_extrude(height = head_height) {
polygon([
[-tooth_width / 2, 0], [-tooth_width / 3, tooth_length],
[tooth_width / 3, tooth_length], [tooth_width / 2, 0]
]);
}
translate([0, tooth_length, 0]) {
cylinder(r = tooth_width / 3, h = head_height);
}
if (tooth_length >= 12) {
translate([-head_height / 2 + 2, head_diameter / 2 + head_thickness - 0.5, -4]) {
rotate([90, 0, 0]) {
rotate([0, -90, 0]) {
linear_extrude(height = head_height) {
polygon([
[-tooth_length / 1.7, 4], [0, 4], [0, - reinforcement_height + 5],
[-2, - reinforcement_height + 5]
]);
}
}
}
}
}
}
// Hole
for (i = [0 : hole_count - 1]) {
//translate([0, length - (length / hole_count * i), -1]) {
translate([0, tooth_length - (4 * i), -1]) {
cylinder(r = arm_screw_diameter / 2, h = 10);
}
}
cylinder(r = head_screw_diameter / 2, h = 10);
}
}
difference() {
translate([0, 0, 0.1]) {
cylinder(r = head_diameter / 2 + head_thickness, h = head_height + 1);
}
cylinder(r = head_screw_diameter / 2, h = 10);
servo_head(params);
}
arm_thickness = head_thickness;
// Arm
translate([0, 0, head_height]) {
for (i = [0 : arm_count - 1]) {
rotate([0, 0, i * (360 / arm_count)]) {
arm(arm_length, head_diameter + arm_thickness * 2, head_height, 2);
}
}
}
}
module demo() {
rotate([0, 180, 0])
servo_standard(20, 4);
}
demo();