planet-wars/frontend/src/lib.rs
ajuvercr dcf1173cb8
Docker (#25)
* change wasm to real vectors

* Add volume bind command to README

* add changable host name variable

Co-authored-by: Francis <francisklinck@gmail.com>
2020-06-24 14:16:14 +02:00

370 lines
9.8 KiB
Rust

extern crate serde;
#[macro_use]
extern crate serde_derive;
extern crate octoon_math;
extern crate serde_json;
extern crate voronoi;
use octoon_math::Mat3;
use voronoi::{make_polygons, voronoi, Point};
mod types;
mod utils;
use std::collections::HashMap;
use wasm_bindgen::prelude::*;
macro_rules! console_log {
// Note that this is using the `log` function imported above during
// `bare_bones`
($($t:tt)*) => (log(&format_args!($($t)*).to_string()))
}
// When the `wee_alloc` feature is enabled, use `wee_alloc` as the global
// allocator.
#[cfg(feature = "wee_alloc")]
#[global_allocator]
static ALLOC: wee_alloc::WeeAlloc = wee_alloc::WeeAlloc::INIT;
#[derive(Debug, Clone)]
pub struct Circle {
r: f32,
x: f32,
y: f32,
a0: f32,
ad: f32,
distance: usize,
}
use std::f32::consts::PI;
fn spr(from: f32) -> f32 {
let pi2 = PI * 2.;
((from % pi2) + pi2) % pi2
}
impl Circle {
pub fn new(p1: &types::Planet, p2: &types::Planet) -> Self {
let x1 = p1.x;
let y1 = p1.y;
let x2 = p2.x;
let y2 = p2.y;
// Distance between planets
let q = ((x2 - x1).powi(2) + (y2 - y1).powi(2)).sqrt();
// Center of between planets
let x3 = (x1 + x2) / 2.0;
let y3 = (y1 + y2) / 2.0;
// Radius of circle
let r = q * 1.0;
// Center of circle
let x = x3 + (r.powi(2) - (q / 2.0).powi(2)).sqrt() * (y1 - y2) / q;
let y = y3 + (r.powi(2) - (q / 2.0).powi(2)).sqrt() * (x2 - x1) / q;
// console_log!("{},{} -> {},{} ({},{} r={})", x1, y1, x2, y2, x, y, r);
let a0 = spr((y - y1).atan2(x - x1));
let a2 = spr((y - y2).atan2(x - x2));
let mut ad = spr(a0 - a2);
if ad > PI {
ad = spr(a2 - a0);
}
// console_log!("a1 {} a2 {} ad {}", a0/PI * 180.0, a2/PI * 180.0, ad/PI*180.0);
let distance = q.ceil() as usize + 1;
Self {
r,
x,
y,
a0,
ad,
distance,
}
}
pub fn get_for_remaining(&self, remaining: usize) -> ((Mat3<f32>, f32), (Mat3<f32>, f32)) {
(
self.get_remaining(remaining),
self.get_remaining((remaining + 1).min(self.distance - 1)),
)
}
fn get_remaining(&self, remaining: usize) -> (Mat3<f32>, f32) {
let alpha = self.a0 + (1.0 - (remaining as f32 / self.distance as f32)) * self.ad;
let cos = alpha.cos();
let sin = alpha.sin();
(
Mat3::new(
0.3,
0.0,
0.0,
0.0,
0.3,
0.0,
-self.x + cos * self.r,
-self.y + sin * self.r,
0.3,
),
alpha,
)
}
}
fn create_voronoi(planets: &Vec<types::Planet>, bbox: f32) -> (Vec<f32>, Vec<usize>) {
let mut verts: Vec<[f32; 2]> = planets.iter().map(|p| [p.x, p.y]).collect();
let mut ids = Vec::new();
let vor_points = planets
.iter()
.map(|p| Point::new(p.x as f64, p.y as f64))
.collect();
let vor = voronoi(vor_points, bbox as f64);
let vor = make_polygons(&vor);
for poly in vor.iter() {
// Get planet index for planet that is inside this poligon
let idx = 0;
let mut prev = ids.len() + poly.len() - 1;
for p in poly.iter() {
let now = verts.len();
verts.push([p.x.0 as f32, p.y.0 as f32]);
ids.push(idx);
ids.push(now);
ids.push(prev);
prev = now;
}
}
(verts.concat(), ids)
}
#[wasm_bindgen]
pub struct Game {
states: Vec<types::State>,
turn: usize,
planet_map: HashMap<(String, String), Circle>,
/* put extra shit here */
view_box: Vec<f32>,
planets: Vec<f32>,
planet_ships: Vec<usize>,
ship_locations: Vec<f32>,
ship_label_locations: Vec<f32>,
ship_colours: Vec<f32>,
ship_counts: Vec<usize>,
current_planet_colours: Vec<f32>,
voronoi_vertices: Vec<f32>,
voronoi_colors: Vec<f32>,
voronoi_indices: Vec<usize>,
}
#[wasm_bindgen]
impl Game {
pub fn new(file: &str) -> Self {
utils::set_panic_hook();
console_log!("Rust is busy being awesome!");
// First line is fucked but we just filter out things that cannot parse
let states: Vec<types::State> = file
.split("\n")
.filter_map(|line| serde_json::from_str(line).ok())
.collect();
let mut planet_map = HashMap::new();
// Iterator?
for p1 in states[0].planets.iter() {
for p2 in states[0].planets.iter() {
planet_map.insert((p1.name.clone(), p2.name.clone()), Circle::new(&p1, &p2));
}
}
let view_box = utils::caclulate_viewbox(&states[0].planets);
let (voronoi_vertices, voronoi_indices) =
create_voronoi(&states[0].planets, view_box[2].max(view_box[3]));
let voronoi_colors: Vec<f32> = voronoi_indices
.iter()
.map(|_| [0.0, 0.0, 0.0])
.collect::<Vec<[f32; 3]>>()
.concat(); // Init these colours on black
Self {
planets: utils::get_planets(&states[0].planets, 2.0),
planet_ships: Vec::new(),
view_box,
planet_map,
turn: 0,
states,
ship_locations: Vec::new(),
ship_label_locations: Vec::new(),
ship_colours: Vec::new(),
ship_counts: Vec::new(),
current_planet_colours: Vec::new(),
voronoi_vertices,
voronoi_indices,
voronoi_colors,
}
}
pub fn get_viewbox(&self) -> Vec<f32> {
self.view_box.clone()
}
pub fn get_planets(&self) -> Vec<f32> {
self.planets.clone()
}
pub fn get_planet_ships(&self) -> Vec<usize> {
self.planet_ships.clone()
}
pub fn get_planet_colors(&self) -> Vec<f32> {
self.current_planet_colours.clone()
}
pub fn turn_count(&self) -> usize {
self.states.len()
}
pub fn update_turn(&mut self, turn: usize) -> usize {
self.turn = turn.min(self.states.len() - 1);
self.update_planet_ships();
self.update_planet_colours();
self.update_voronoi_colors();
self.update_ship_locations();
self.update_ship_counts();
self.turn
}
fn update_planet_ships(&mut self) {
self.planet_ships = self.states[self.turn]
.planets
.iter()
.map(|p| p.ship_count as usize)
.collect();
}
fn update_voronoi_colors(&mut self) {
for (i, p) in self.states[self.turn].planets.iter().enumerate() {
let color = utils::COLORS[p.owner.unwrap_or(0) as usize % utils::COLORS.len()];
self.voronoi_colors[i * 3 + 0] = color[0];
self.voronoi_colors[i * 3 + 1] = color[1];
self.voronoi_colors[i * 3 + 2] = color[2];
}
}
fn update_planet_colours(&mut self) {
let mut new_vec: Vec<[f32; 3]> = Vec::new();
let planets_now = self.states[self.turn].planets.iter();
let planets_later = self.states[(self.turn + 1).min(self.states.len() - 1)]
.planets
.iter();
for (p1, p2) in planets_now.zip(planets_later) {
new_vec
.push(utils::COLORS[p1.owner.unwrap_or(0) as usize % utils::COLORS.len()].into());
new_vec
.push(utils::COLORS[p2.owner.unwrap_or(0) as usize % utils::COLORS.len()].into());
}
self.current_planet_colours = new_vec.concat::<f32>();
}
fn update_ship_locations(&mut self) {
let mut new_sl = Vec::new();
let mut new_sll = Vec::new();
let t = Mat3::new(0.2, 0., 0., 0., 0.2, 0.0, 0., -0.5, 0.2);
for ship in self.states[self.turn].expeditions.iter() {
let ((o1, a1), (o2, a2)) = self
.planet_map
.get(&(ship.origin.clone(), ship.destination.clone()))
.unwrap()
.get_for_remaining(ship.turns_remaining as usize);
new_sl.push((o1 * Mat3::rotate_z(a1)).to_array());
new_sl.push((o2 * Mat3::rotate_z(a2)).to_array());
new_sll.push((o1 + t).to_array());
new_sll.push((o2 + t).to_array());
}
self.ship_locations = new_sl.concat();
self.ship_label_locations = new_sll.concat();
self.ship_colours = self.states[self.turn]
.expeditions
.iter()
.map(|s| utils::COLORS[s.owner as usize % utils::COLORS.len()])
.collect::<Vec<[f32; 3]>>()
.concat();
}
fn update_ship_counts(&mut self) {
self.ship_counts = self.states[self.turn]
.expeditions
.iter()
.map(|s| s.ship_count as usize)
.collect();
}
pub fn get_max_ships(&self) -> usize {
self.states
.iter()
.map(|s| s.expeditions.len())
.max()
.unwrap()
}
pub fn get_ship_locations(&self) -> Vec<f32> {
self.ship_locations.clone()
}
pub fn get_ship_label_locations(&self) -> Vec<f32> {
self.ship_label_locations.clone()
}
pub fn get_ship_colours(&self) -> Vec<f32> {
self.ship_colours.clone()
}
pub fn get_ship_counts(&self) -> Vec<usize> {
self.ship_counts.clone()
}
pub fn get_voronoi_verts(&self) -> Vec<f32> {
self.voronoi_vertices.clone()
}
pub fn get_voronoi_colours(&self) -> Vec<f32> {
self.voronoi_colors.clone()
}
pub fn get_voronoi_inds(&self) -> Vec<usize> {
self.voronoi_indices.clone()
}
}
#[wasm_bindgen]
extern "C" {
fn alert(s: &str);
#[wasm_bindgen(js_namespace = console)]
fn log(s: &str);
}