import * as turf from '@turf/turf' import {Utils} from "../Utils"; import {Tiles} from "../Models/TileRange"; export class GeoOperations { static surfaceAreaInSqMeters(feature: any) { return turf.area(feature); } /** * Converts a GeoJson feature to a point GeoJson feature * @param feature */ static centerpoint(feature: any) { const newFeature = turf.center(feature); newFeature.properties = feature.properties; newFeature.id = feature.id; return newFeature; } static centerpointCoordinates(feature: any): [number, number] { // @ts-ignore return turf.center(feature).geometry.coordinates; } /** * Returns the distance between the two points in kilometers * @param lonlat0 * @param lonlat1 */ static distanceBetween(lonlat0: [number, number], lonlat1: [number, number]) { return turf.distance(lonlat0, lonlat1) } /** * Calculates the overlap of 'feature' with every other specified feature. * The features with which 'feature' overlaps, are returned together with their overlap area in m² * * If 'feature' is a LineString, the features in which this feature is (partly) embedded is returned, the overlap length in meter is given * * If 'feature' is a point, it will return every feature the point is embedded in. Overlap will be undefined */ static calculateOverlap(feature: any, otherFeatures: any[]): { feat: any, overlap: number }[] { const featureBBox = BBox.get(feature); const result: { feat: any, overlap: number }[] = []; if (feature.geometry.type === "Point") { const coor = feature.geometry.coordinates; for (const otherFeature of otherFeatures) { if (feature.id !== undefined && feature.id === otherFeature.id) { continue; } if (otherFeature.geometry === undefined) { console.error("No geometry for feature ", feature) throw "List of other features contains a feature without geometry an undefined" } if (GeoOperations.inside(coor, otherFeature)) { result.push({feat: otherFeature, overlap: undefined}) } } return result; } if (feature.geometry.type === "LineString") { for (const otherFeature of otherFeatures) { if (feature.id !== undefined && feature.id === otherFeature.id) { continue; } const intersection = this.calculateInstersection(feature, otherFeature, featureBBox) if (intersection === null) { continue } result.push({feat: otherFeature, overlap: intersection}) } return result; } if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") { for (const otherFeature of otherFeatures) { if (feature.id === otherFeature.id) { continue; } if (otherFeature.geometry.type === "Point") { if (this.inside(otherFeature, feature)) { result.push({feat: otherFeature, overlap: undefined}) } continue; } // Calculate the surface area of the intersection const intersection = this.calculateInstersection(feature, otherFeature, featureBBox) if (intersection === null) { continue; } result.push({feat: otherFeature, overlap: intersection}) } return result; } console.error("Could not correctly calculate the overlap of ", feature, ": unsupported type") return result; } public static inside(pointCoordinate, feature): boolean { // ray-casting algorithm based on // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html if (feature.geometry.type === "Point") { return false; } if (pointCoordinate.geometry !== undefined) { pointCoordinate = pointCoordinate.geometry.coordinates } if (feature.geometry.type === "MultiPolygon") { const coordinates = feature.geometry.coordinates[0]; const outerPolygon = coordinates[0]; const inside = GeoOperations.inside(pointCoordinate, { geometry: { type: 'Polygon', coordinates: [outerPolygon] } }) if (!inside) { return false; } for (let i = 1; i < coordinates.length; i++) { const inHole = GeoOperations.inside(pointCoordinate, { geometry: { type: 'Polygon', coordinates: [coordinates[i]] } }) if (inHole) { return false; } } return true; } const x: number = pointCoordinate[0]; const y: number = pointCoordinate[1]; for (let i = 0; i < feature.geometry.coordinates.length; i++) { let poly = feature.geometry.coordinates[i]; let inside = false; for (let i = 0, j = poly.length - 1; i < poly.length; j = i++) { const coori = poly[i]; const coorj = poly[j]; const xi = coori[0]; const yi = coori[1]; const xj = coorj[0]; const yj = coorj[1]; const intersect = ((yi > y) != (yj > y)) && (x < (xj - xi) * (y - yi) / (yj - yi) + xi); if (intersect) { inside = !inside; } } if (inside) { return true; } } return false; }; static lengthInMeters(feature: any) { return turf.length(feature) * 1000 } static buffer(feature: any, bufferSizeInMeter: number) { return turf.buffer(feature, bufferSizeInMeter / 1000, { units: 'kilometers' }) } static bbox(feature: any) { const [lon, lat, lon0, lat0] = turf.bbox(feature) return { "type": "Feature", "geometry": { "type": "LineString", "coordinates": [ [ lon, lat ], [ lon0, lat ], [ lon0, lat0 ], [ lon, lat0 ], [ lon, lat ], ] } } } /** * Generates the closest point on a way from a given point * * The properties object will contain three values: // - `index`: closest point was found on nth line part, // - `dist`: distance between pt and the closest point (in kilometer), // `location`: distance along the line between start and the closest point. * @param way The road on which you want to find a point * @param point Point defined as [lon, lat] */ public static nearestPoint(way, point: [number, number]) { return turf.nearestPointOnLine(way, point, {units: "kilometers"}); } public static toCSV(features: any[]): string { const headerValuesSeen = new Set(); const headerValuesOrdered: string[] = [] function addH(key) { if (!headerValuesSeen.has(key)) { headerValuesSeen.add(key) headerValuesOrdered.push(key) } } addH("_lat") addH("_lon") const lines: string[] = [] for (const feature of features) { const properties = feature.properties; for (const key in properties) { if (!properties.hasOwnProperty(key)) { continue; } addH(key) } } headerValuesOrdered.sort() for (const feature of features) { const properties = feature.properties; let line = "" for (const key of headerValuesOrdered) { const value = properties[key] if (value === undefined) { line += "," } else { line += JSON.stringify(value) + "," } } lines.push(line) } return headerValuesOrdered.map(v => JSON.stringify(v)).join(",") + "\n" + lines.join("\n") } /** * Calculates the intersection between two features. * Returns the length if intersecting a linestring and a (multi)polygon (in meters), returns a surface area (in m²) if intersecting two (multi)polygons * Returns 0 if both are linestrings * Returns null if the features are not intersecting */ private static calculateInstersection(feature, otherFeature, featureBBox: BBox, otherFeatureBBox?: BBox): number { try { if (feature.geometry.type === "LineString") { otherFeatureBBox = otherFeatureBBox ?? BBox.get(otherFeature); const overlaps = featureBBox.overlapsWith(otherFeatureBBox) if (!overlaps) { return null; } // Calculate the length of the intersection let intersectionPoints = turf.lineIntersect(feature, otherFeature); if (intersectionPoints.features.length == 0) { // No intersections. // If one point is inside of the polygon, all points are const coors = feature.geometry.coordinates; const startCoor = coors[0] if (this.inside(startCoor, otherFeature)) { return this.lengthInMeters(feature) } return null; } let intersectionPointsArray = intersectionPoints.features.map(d => { return d.geometry.coordinates }); if (otherFeature.geometry.type === "LineString") { if (intersectionPointsArray.length > 0) { return 0 } return null; } if (intersectionPointsArray.length == 1) { // We need to add the start- or endpoint of the current feature, depending on which one is embedded const coors = feature.geometry.coordinates; const startCoor = coors[0] if (this.inside(startCoor, otherFeature)) { // The startpoint is embedded intersectionPointsArray.push(startCoor) } else { intersectionPointsArray.push(coors[coors.length - 1]) } } let intersection = turf.lineSlice(turf.point(intersectionPointsArray[0]), turf.point(intersectionPointsArray[1]), feature); if (intersection == null) { return null; } const intersectionSize = turf.length(intersection); // in km return intersectionSize * 1000 } if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") { const otherFeatureBBox = BBox.get(otherFeature); const overlaps = featureBBox.overlapsWith(otherFeatureBBox) if (!overlaps) { return null; } if (otherFeature.geometry.type === "LineString") { return this.calculateInstersection(otherFeature, feature, otherFeatureBBox, featureBBox) } const intersection = turf.intersect(feature, otherFeature); if (intersection == null) { return null; } return turf.area(intersection); // in m² } } catch (exception) { console.warn("EXCEPTION CAUGHT WHILE INTERSECTING: ", exception); return undefined } return undefined; } } export class BBox { readonly maxLat: number; readonly maxLon: number; readonly minLat: number; readonly minLon: number; static global: BBox = new BBox([[-180, -90], [180, 90]]); constructor(coordinates) { this.maxLat = Number.MIN_VALUE; this.maxLon = Number.MIN_VALUE; this.minLat = Number.MAX_VALUE; this.minLon = Number.MAX_VALUE; for (const coordinate of coordinates) { this.maxLon = Math.max(this.maxLon, coordinate[0]); this.maxLat = Math.max(this.maxLat, coordinate[1]); this.minLon = Math.min(this.minLon, coordinate[0]); this.minLat = Math.min(this.minLat, coordinate[1]); } this.check(); } static fromLeafletBounds(bounds) { return new BBox([[bounds.getWest(), bounds.getNorth()], [bounds.getEast(), bounds.getSouth()]]) } static get(feature): BBox { if (feature.bbox?.overlapsWith === undefined) { const turfBbox: number[] = turf.bbox(feature) feature.bbox = new BBox([[turfBbox[0], turfBbox[1]], [turfBbox[2], turfBbox[3]]]); } return feature.bbox; } public overlapsWith(other: BBox) { if (this.maxLon < other.minLon) { return false; } if (this.maxLat < other.minLat) { return false; } if (this.minLon > other.maxLon) { return false; } return this.minLat <= other.maxLat; } public isContainedIn(other: BBox) { if (this.maxLon > other.maxLon) { return false; } if (this.maxLat > other.maxLat) { return false; } if (this.minLon < other.minLon) { return false; } if (this.minLat < other.minLat) { return false } return true; } private check() { if (isNaN(this.maxLon) || isNaN(this.maxLat) || isNaN(this.minLon) || isNaN(this.minLat)) { console.log(this); throw "BBOX has NAN"; } } static fromTile(z: number, x: number, y: number): BBox { return new BBox(Tiles.tile_bounds_lon_lat(z, x, y)) } static fromTileIndex(i: number): BBox { return BBox.fromTile(...Tiles.tile_from_index(i)) } getEast() { return this.maxLon } getNorth() { return this.maxLat } getWest() { return this.minLon } getSouth() { return this.minLat } pad(factor: number) : BBox { const latDiff = this.maxLat - this.minLat const lat = (this.maxLat + this.minLat) / 2 const lonDiff = this.maxLon - this.minLon const lon = (this.maxLon + this.minLon) / 2 return new BBox([[ lon - lonDiff * factor, lat - latDiff * factor ], [lon + lonDiff * factor, lat + latDiff * factor]]) } toLeaflet() { return [[this.minLat, this.minLon], [this.maxLat, this.maxLon]] } }