mapcomplete/Logic/GeoOperations.ts

1047 lines
40 KiB
TypeScript

import { BBox } from "./BBox"
import * as turf from "@turf/turf"
import { AllGeoJSON, booleanWithin, Coord } from "@turf/turf"
import {
Feature,
FeatureCollection,
GeoJSON,
Geometry,
LineString,
MultiLineString,
MultiPolygon,
Point,
Polygon,
Position,
} from "geojson"
import { Tiles } from "../Models/TileRange"
import { Utils } from "../Utils"
export class GeoOperations {
private static readonly _earthRadius = 6378137
private static readonly _originShift = (2 * Math.PI * GeoOperations._earthRadius) / 2
/**
* Create a union between two features
*/
public static union(f0: Feature, f1: Feature): Feature<Polygon | MultiPolygon> | null {
return turf.union(<any>f0, <any>f1)
}
public static intersect(f0: Feature, f1: Feature): Feature<Polygon | MultiPolygon> | null {
return turf.intersect(<any>f0, <any>f1)
}
static surfaceAreaInSqMeters(feature: any) {
return turf.area(feature)
}
/**
* Converts a GeoJson feature to a point GeoJson feature
* @param feature
*/
static centerpoint(feature: any): Feature<Point> {
const newFeature: Feature<Point> = turf.center(feature)
newFeature.properties = feature.properties
newFeature.id = feature.id
return newFeature
}
/**
* Returns [lon,lat] coordinates
* @param feature
*/
static centerpointCoordinates(feature: AllGeoJSON | GeoJSON): [number, number] {
return <[number, number]>turf.center(<any>feature).geometry.coordinates
}
/**
* Returns the distance between the two points in meters
* @param lonlat0
* @param lonlat1
*/
static distanceBetween(lonlat0: [number, number], lonlat1: [number, number] | Position) {
return turf.distance(lonlat0, lonlat1, { units: "meters" })
}
static convexHull(featureCollection, options: { concavity?: number }) {
return turf.convex(featureCollection, options)
}
/**
* Calculates the overlap of 'feature' with every other specified feature.
* The features with which 'feature' overlaps, are returned together with their overlap area in m²
*
* If 'feature' is a LineString, the features in which this feature is (partly) embedded is returned, the overlap length in meter is given
* If 'feature' is a Polygon, overlapping points and points within the polygon will be returned
*
* If 'feature' is a point, it will return every feature the point is embedded in. Overlap will be undefined
*
* const polygon = {"type": "Feature","properties": {},"geometry": {"type": "Polygon","coordinates": [[[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]]]}};
* const point = {"type": "Feature", "properties": {}, "geometry": { "type": "Point", "coordinates": [2.274169921875, 46.76244305208004]}};
* const overlap = GeoOperations.calculateOverlap(point, [polygon]);
* overlap.length // => 1
* overlap[0].feat == polygon // => true
* const line = {"type": "Feature","properties": {},"geometry": {"type": "LineString","coordinates": [[3.779296875,48.777912755501845],[1.23046875,47.60616304386874]]}};
* const lineOverlap = GeoOperations.calculateOverlap(line, [polygon]);
* lineOverlap.length // => 1
* lineOverlap[0].overlap // => 156745.3293320278
* lineOverlap[0].feat == polygon // => true
* const line0 = {"type": "Feature","properties": {},"geometry": {"type": "LineString","coordinates": [[0.0439453125,47.31648293428332],[0.6591796875,46.77749276376827]]}};
* const overlap0 = GeoOperations.calculateOverlap(line0, [polygon]);
* overlap.length // => 1
*/
static calculateOverlap(feature: any, otherFeatures: any[]): { feat: any; overlap: number }[] {
const featureBBox = BBox.get(feature)
const result: { feat: any; overlap: number }[] = []
if (feature.geometry.type === "Point") {
const coor = feature.geometry.coordinates
for (const otherFeature of otherFeatures) {
if (
feature.properties.id !== undefined &&
feature.properties.id === otherFeature.properties.id
) {
continue
}
if (otherFeature.geometry === undefined) {
console.error("No geometry for feature ", feature)
throw "List of other features contains a feature without geometry an undefined"
}
if (GeoOperations.inside(coor, otherFeature)) {
result.push({ feat: otherFeature, overlap: undefined })
}
}
return result
}
if (feature.geometry.type === "LineString") {
for (const otherFeature of otherFeatures) {
if (
feature.properties.id !== undefined &&
feature.properties.id === otherFeature.properties.id
) {
continue
}
const intersection = GeoOperations.calculateInstersection(
feature,
otherFeature,
featureBBox
)
if (intersection === null) {
continue
}
result.push({ feat: otherFeature, overlap: intersection })
}
return result
}
if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
for (const otherFeature of otherFeatures) {
if (
feature.properties.id !== undefined &&
feature.properties.id === otherFeature.properties.id
) {
continue
}
if (otherFeature.geometry.type === "Point") {
if (this.inside(otherFeature, feature)) {
result.push({ feat: otherFeature, overlap: undefined })
}
continue
}
// Calculate the surface area of the intersection
const intersection = this.calculateInstersection(feature, otherFeature, featureBBox)
if (intersection === null) {
continue
}
result.push({ feat: otherFeature, overlap: intersection })
}
return result
}
console.error(
"Could not correctly calculate the overlap of ",
feature,
": unsupported type"
)
return result
}
/**
* Detect wether or not the given point is located in the feature
*
* // Should work with a normal polygon
* const polygon = {"type": "Feature","properties": {},"geometry": {"type": "Polygon","coordinates": [[[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]]]}};
* GeoOperations.inside([3.779296875, 48.777912755501845], polygon) // => false
* GeoOperations.inside([1.23046875, 47.60616304386874], polygon) // => true
*
* // should work with a multipolygon and detect holes
* const multiPolygon = {"type": "Feature", "properties": {},
* "geometry": {
* "type": "MultiPolygon",
* "coordinates": [[
* [[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]],
* [[1.0107421875,48.821332549646634],[1.329345703125,48.25394114463431],[1.988525390625,48.71271258145237],[0.999755859375,48.86471476180277],[1.0107421875,48.821332549646634]]
* ]]
* }
* };
* GeoOperations.inside([2.515869140625, 47.37603463349758], multiPolygon) // => true
* GeoOperations.inside([1.42822265625, 48.61838518688487], multiPolygon) // => false
* GeoOperations.inside([4.02099609375, 47.81315451752768], multiPolygon) // => false
*/
public static inside(
pointCoordinate: [number, number] | Feature<Point>,
feature: Feature
): boolean {
// ray-casting algorithm based on
// http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
if (feature.geometry.type === "Point") {
// The feature that should 'contain' pointCoordinate is a point itself, so it cannot contain anything
return false
}
if (pointCoordinate["geometry"] !== undefined) {
pointCoordinate = pointCoordinate["geometry"].coordinates
}
const x: number = pointCoordinate[0]
const y: number = pointCoordinate[1]
if (feature.geometry.type === "MultiPolygon") {
const coordinatess = feature.geometry.coordinates
for (const coordinates of coordinatess) {
// @ts-ignore
const inThisPolygon = GeoOperations.pointInPolygonCoordinates(x, y, coordinates)
if (inThisPolygon) {
return true
}
}
return false
}
if (feature.geometry.type === "Polygon") {
// @ts-ignore
return GeoOperations.pointInPolygonCoordinates(x, y, feature.geometry.coordinates)
}
throw "GeoOperations.inside: unsupported geometry type " + feature.geometry.type
}
static lengthInMeters(feature: any) {
return turf.length(feature) * 1000
}
static buffer(feature: any, bufferSizeInMeter: number) {
return turf.buffer(feature, bufferSizeInMeter / 1000, {
units: "kilometers",
})
}
static bbox(feature: Feature | FeatureCollection): Feature<LineString, {}> {
const [lon, lat, lon0, lat0] = turf.bbox(feature)
return {
type: "Feature",
properties: {},
geometry: {
type: "LineString",
coordinates: [
[lon, lat],
[lon0, lat],
[lon0, lat0],
[lon, lat0],
[lon, lat],
],
},
}
}
/**
* Generates the closest point on a way from a given point.
* If the passed-in geojson object is a polygon, the outer ring will be used as linestring
*
* The properties object will contain three values:
// - `index`: closest point was found on nth line part,
// - `dist`: distance between pt and the closest point (in kilometer),
// `location`: distance along the line between start (of the line) and the closest point.
* @param way The road on which you want to find a point
* @param point Point defined as [lon, lat]
*/
public static nearestPoint(
way: Feature<LineString>,
point: [number, number]
): Feature<
Point,
{
index: number
dist: number
location: number
}
> {
return <any>(
turf.nearestPointOnLine(<Feature<LineString>>way, point, { units: "kilometers" })
)
}
/**
* Helper method to reuse the coordinates of the way as LineString.
* Mostly used as helper for 'nearestPoint'
* @param way
*/
public static forceLineString(way: Feature<LineString | Polygon>): Feature<LineString>
public static forceLineString(
way: Feature<MultiLineString | MultiPolygon>
): Feature<MultiLineString>
public static forceLineString(
way: Feature<LineString | MultiLineString | Polygon | MultiPolygon>
): Feature<LineString | MultiLineString> {
if (way.geometry.type === "Polygon") {
way = { ...way }
way.geometry = { ...way.geometry }
way.geometry.type = "LineString"
way.geometry.coordinates = (<Polygon>way.geometry).coordinates[0]
} else if (way.geometry.type === "MultiPolygon") {
way = { ...way }
way.geometry = { ...way.geometry }
way.geometry.type = "MultiLineString"
way.geometry.coordinates = (<MultiPolygon>way.geometry).coordinates[0]
}
return <any>way
}
public static toCSV(features: any[]): string {
const headerValuesSeen = new Set<string>()
const headerValuesOrdered: string[] = []
function addH(key) {
if (!headerValuesSeen.has(key)) {
headerValuesSeen.add(key)
headerValuesOrdered.push(key)
}
}
addH("_lat")
addH("_lon")
const lines: string[] = []
for (const feature of features) {
const properties = feature.properties
for (const key in properties) {
if (!properties.hasOwnProperty(key)) {
continue
}
addH(key)
}
}
headerValuesOrdered.sort()
for (const feature of features) {
const properties = feature.properties
let line = ""
for (const key of headerValuesOrdered) {
const value = properties[key]
if (value === undefined) {
line += ","
} else {
line += JSON.stringify(value) + ","
}
}
lines.push(line)
}
return headerValuesOrdered.map((v) => JSON.stringify(v)).join(",") + "\n" + lines.join("\n")
}
//Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913
public static ConvertWgs84To900913(lonLat: [number, number]): [number, number] {
const lon = lonLat[0]
const lat = lonLat[1]
const x = (lon * GeoOperations._originShift) / 180
let y = Math.log(Math.tan(((90 + lat) * Math.PI) / 360)) / (Math.PI / 180)
y = (y * GeoOperations._originShift) / 180
return [x, y]
}
//Converts XY point from (Spherical) Web Mercator EPSG:3785 (unofficially EPSG:900913) to lat/lon in WGS84 Datum
public static Convert900913ToWgs84(lonLat: [number, number]): [number, number] {
const lon = lonLat[0]
const lat = lonLat[1]
const x = (180 * lon) / GeoOperations._originShift
let y = (180 * lat) / GeoOperations._originShift
y = (180 / Math.PI) * (2 * Math.atan(Math.exp((y * Math.PI) / 180)) - Math.PI / 2)
return [x, y]
}
public static GeoJsonToWGS84(geojson) {
return turf.toWgs84(geojson)
}
/**
* Tries to remove points which do not contribute much to the general outline.
* Points for which the angle is ~ 180° are removed
* @param coordinates
* @constructor
*/
public static SimplifyCoordinates(coordinates: [number, number][]) {
const newCoordinates = []
for (let i = 1; i < coordinates.length - 1; i++) {
const coordinate = coordinates[i]
const prev = coordinates[i - 1]
const next = coordinates[i + 1]
const b0 = turf.bearing(prev, coordinate, { final: true })
const b1 = turf.bearing(coordinate, next)
const diff = Math.abs(b1 - b0)
if (diff < 2) {
continue
}
newCoordinates.push(coordinate)
}
return newCoordinates
}
/**
* Calculates line intersection between two features.
*/
public static LineIntersections(feature: Feature<LineString | MultiLineString | Polygon | MultiPolygon>, otherFeature: Feature<LineString | MultiLineString | Polygon | MultiPolygon>): [number, number][] {
return turf
.lineIntersect(feature, otherFeature)
.features.map((p) => <[number, number]>p.geometry.coordinates)
}
/**
* Given a list of features, will construct a map of slippy map tile-indices.
* Features of which the BBOX overlaps with the corresponding slippy map tile are added to the corresponding array
* @param features
* @param zoomlevel
*/
public static spreadIntoBboxes(features: Feature[], zoomlevel: number) : Map<number, Feature[]> {
const perBbox = new Map<number, Feature[]>()
for (const feature of features) {
const bbox = BBox.get(feature)
const tilerange = bbox.expandToTileBounds(zoomlevel).containingTileRange(zoomlevel)
Tiles.MapRange(tilerange, (x, y) => {
const tileNumber = Tiles.tile_index(zoomlevel, x, y)
let newFeatureList = perBbox.get(tileNumber)
if(newFeatureList === undefined){
newFeatureList = []
perBbox.set(tileNumber, newFeatureList)
}
newFeatureList.push(feature)
})
}
return perBbox
}
public static toGpx(
locations:
| Feature<LineString>
| Feature<Point, { date?: string; altitude?: number | string }>[],
title?: string
) {
title = title?.trim()
if (title === undefined || title === "") {
title = "Uploaded with MapComplete"
}
title = Utils.EncodeXmlValue(title)
const trackPoints: string[] = []
let locationsWithMeta: Feature<Point, { date?: string; altitude?: number | string }>[]
if (Array.isArray(locations)) {
locationsWithMeta = locations
} else {
locationsWithMeta = locations.geometry.coordinates.map(
(p) =>
<Feature<Point>>{
type: "Feature",
properties: {},
geometry: {
type: "Point",
coordinates: p,
},
}
)
}
for (const l of locationsWithMeta) {
let trkpt = ` <trkpt lat="${l.geometry.coordinates[1]}" lon="${l.geometry.coordinates[0]}">`
if (l.properties.date) {
trkpt += ` <time>${l.properties.date}</time>`
}
if (l.properties.altitude) {
trkpt += ` <ele>${l.properties.altitude}</ele>`
}
trkpt += " </trkpt>"
trackPoints.push(trkpt)
}
const header =
'<gpx version="1.1" creator="MapComplete.osm.be" xmlns="http://www.topografix.com/GPX/1/1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd">'
return (
header +
"\n<name>" +
title +
"</name>\n<trk><trkseg>\n" +
trackPoints.join("\n") +
"\n</trkseg></trk></gpx>"
)
}
public static IdentifieCommonSegments(coordinatess: [number, number][][]): {
originalIndex: number
segmentShardWith: number[]
coordinates: []
}[] {
// An edge. Note that the edge might be reversed to fix the sorting condition: start[0] < end[0] && (start[0] != end[0] || start[0] < end[1])
type edge = {
start: [number, number]
end: [number, number]
intermediate: [number, number][]
members: { index: number; isReversed: boolean }[]
}
// The strategy:
// 1. Index _all_ edges from _every_ linestring. Index them by starting key, gather which relations run over them
// 2. Join these edges back together - as long as their membership groups are the same
// 3. Convert to results
const allEdgesByKey = new Map<string, edge>()
for (let index = 0; index < coordinatess.length; index++) {
const coordinates = coordinatess[index]
for (let i = 0; i < coordinates.length - 1; i++) {
const c0 = coordinates[i]
const c1 = coordinates[i + 1]
const isReversed = c0[0] > c1[0] || (c0[0] == c1[0] && c0[1] > c1[1])
let key: string
if (isReversed) {
key = "" + c1 + ";" + c0
} else {
key = "" + c0 + ";" + c1
}
const member = { index, isReversed }
if (allEdgesByKey.has(key)) {
allEdgesByKey.get(key).members.push(member)
continue
}
let edge: edge
if (!isReversed) {
edge = {
start: c0,
end: c1,
members: [member],
intermediate: [],
}
} else {
edge = {
start: c1,
end: c0,
members: [member],
intermediate: [],
}
}
allEdgesByKey.set(key, edge)
}
}
// Lets merge them back together!
let didMergeSomething = false
let allMergedEdges = Array.from(allEdgesByKey.values())
const allEdgesByStartPoint = new Map<string, edge[]>()
for (const edge of allMergedEdges) {
edge.members.sort((m0, m1) => m0.index - m1.index)
const kstart = edge.start + ""
if (!allEdgesByStartPoint.has(kstart)) {
allEdgesByStartPoint.set(kstart, [])
}
allEdgesByStartPoint.get(kstart).push(edge)
}
function membersAreCompatible(first: edge, second: edge): boolean {
// There must be an exact match between the members
if (first.members === second.members) {
return true
}
if (first.members.length !== second.members.length) {
return false
}
// Members are sorted and have the same length, so we can check quickly
for (let i = 0; i < first.members.length; i++) {
const m0 = first.members[i]
const m1 = second.members[i]
if (m0.index !== m1.index || m0.isReversed !== m1.isReversed) {
return false
}
}
// Allrigth, they are the same, lets mark this permanently
second.members = first.members
return true
}
do {
didMergeSomething = false
// We use 'allMergedEdges' as our running list
const consumed = new Set<edge>()
for (const edge of allMergedEdges) {
// Can we make this edge longer at the end?
if (consumed.has(edge)) {
continue
}
console.log("Considering edge", edge)
const matchingEndEdges = allEdgesByStartPoint.get(edge.end + "")
console.log("Matchign endpoints:", matchingEndEdges)
if (matchingEndEdges === undefined) {
continue
}
for (let i = 0; i < matchingEndEdges.length; i++) {
const endEdge = matchingEndEdges[i]
if (consumed.has(endEdge)) {
continue
}
if (!membersAreCompatible(edge, endEdge)) {
continue
}
// We can make the segment longer!
didMergeSomething = true
console.log("Merging ", edge, "with ", endEdge)
edge.intermediate.push(edge.end)
edge.end = endEdge.end
consumed.add(endEdge)
matchingEndEdges.splice(i, 1)
break
}
}
allMergedEdges = allMergedEdges.filter((edge) => !consumed.has(edge))
} while (didMergeSomething)
return []
}
/**
* Removes points that do not contribute to the geometry from linestrings and the outer ring of polygons.
* Returs a new copy of the feature
*
* const feature = {"geometry": {"type": "Polygon","coordinates": [[[4.477944199999975,51.02783550000022],[4.477987899999996,51.027818800000034],[4.478004500000021,51.02783399999988],[4.478025499999962,51.02782489999994],[4.478079099999993,51.027873899999896],[4.47801040000006,51.027903799999955],[4.477964799999972,51.02785709999982],[4.477964699999964,51.02785690000006],[4.477944199999975,51.02783550000022]]]}}
* const copy = GeoOperations.removeOvernoding(feature)
* expect(copy.geometry.coordinates[0]).deep.equal([[4.477944199999975,51.02783550000022],[4.477987899999996,51.027818800000034],[4.478004500000021,51.02783399999988],[4.478025499999962,51.02782489999994],[4.478079099999993,51.027873899999896],[4.47801040000006,51.027903799999955],[4.477944199999975,51.02783550000022]])
*/
static removeOvernoding(feature: any) {
if (feature.geometry.type !== "LineString" && feature.geometry.type !== "Polygon") {
throw "Overnode removal is only supported on linestrings and polygons"
}
const copy = {
...feature,
geometry: { ...feature.geometry },
}
let coordinates: [number, number][]
if (feature.geometry.type === "LineString") {
coordinates = [...feature.geometry.coordinates]
copy.geometry.coordinates = coordinates
} else {
coordinates = [...feature.geometry.coordinates[0]]
copy.geometry.coordinates[0] = coordinates
}
// inline replacement in the coordinates list
for (let i = coordinates.length - 2; i >= 1; i--) {
const coordinate = coordinates[i]
const nextCoordinate = coordinates[i + 1]
const prevCoordinate = coordinates[i - 1]
const distP = GeoOperations.distanceBetween(coordinate, prevCoordinate)
if (distP < 0.1) {
coordinates.splice(i, 1)
continue
}
if (i == coordinates.length - 2) {
const distN = GeoOperations.distanceBetween(coordinate, nextCoordinate)
if (distN < 0.1) {
coordinates.splice(i, 1)
continue
}
}
const bearingN = turf.bearing(coordinate, nextCoordinate)
const bearingP = turf.bearing(prevCoordinate, coordinate)
const diff = Math.abs(bearingN - bearingP)
if (diff < 4) {
// If the diff is low, this point is hardly relevant
coordinates.splice(i, 1)
} else if (360 - diff < 4) {
// In case that the line is going south, e.g. bearingN = 179, bearingP = -179
coordinates.splice(i, 1)
}
}
return copy
}
/**
* Takes two points and finds the geographic bearing between them, i.e. the angle measured in degrees from the north line (0 degrees)
*/
public static bearing(a: Coord, b: Coord): number {
return turf.bearing(a, b)
}
public static along(a: Coord, b: Coord, distanceMeter: number): Coord {
return turf.along(
<any> {
type:"Feature",
geometry:{
type:"LineString",
coordinates: [a, b]
}
}, distanceMeter, {units: "meters"}
).geometry.coordinates
}
/**
* Returns 'true' if one feature contains the other feature
*
* const pond: Feature<Polygon, any> = {
* "type": "Feature",
* "properties": {"natural":"water","water":"pond"},
* "geometry": {
* "type": "Polygon",
* "coordinates": [[
* [4.362924098968506,50.8435422298544 ],
* [4.363272786140442,50.8435219059949 ],
* [4.363213777542114,50.8437420806679 ],
* [4.362924098968506,50.8435422298544 ]
* ]]}}
* const park: Feature<Polygon, any> = {
* "type": "Feature",
* "properties": {"leisure":"park"},
* "geometry": {
* "type": "Polygon",
* "coordinates": [[
* [ 4.36073541641235,50.84323737103244 ],
* [ 4.36469435691833, 50.8423905305197 ],
* [ 4.36659336090087, 50.8458997374786 ],
* [ 4.36254858970642, 50.8468007074916 ],
* [ 4.36073541641235, 50.8432373710324 ]
* ]]}}
* GeoOperations.completelyWithin(pond, park) // => true
* GeoOperations.completelyWithin(park, pond) // => false
*/
static completelyWithin(
feature: Feature<Geometry, any>,
possiblyEnclosingFeature: Feature<Polygon | MultiPolygon, any>
): boolean {
return booleanWithin(feature, possiblyEnclosingFeature)
}
/**
* Create an intersection between two features.
* One or multiple new feature is returned based on 'toSplit', which'll have a geometry that is completely withing boundary
*/
public static clipWith(toSplit: Feature, boundary: Feature<Polygon>): Feature[] {
if (toSplit.geometry.type === "Point") {
const p = <Feature<Point>>toSplit
if (GeoOperations.inside(<[number, number]>p.geometry.coordinates, boundary)) {
return [p]
} else {
return []
}
}
if (toSplit.geometry.type === "LineString") {
const splitup = turf.lineSplit(<Feature<LineString>>toSplit, boundary)
const kept = []
for (const f of splitup.features) {
const ls = <Feature<LineString>>f
if (!GeoOperations.inside(GeoOperations.centerpointCoordinates(f), boundary)) {
continue
}
f.properties = { ...toSplit.properties }
kept.push(f)
}
return kept
}
if (toSplit.geometry.type === "Polygon" || toSplit.geometry.type == "MultiPolygon") {
const splitup = turf.intersect(<Feature<Polygon>>toSplit, boundary)
splitup.properties = { ...toSplit.properties }
return [splitup]
}
throw "Invalid geometry type with GeoOperations.clipWith: " + toSplit.geometry.type
}
/**
*
*
* const f = (type, feature: Feature) => GeoOperations.featureToCoordinateWithRenderingType(feature, type)
* const g = geometry => (<Feature> {type: "Feature", properties: {}, geometry})
* f("point", g({type:"Point", coordinates:[1,2]})) // => [1,2]
* f("centroid", g({type:"Point", coordinates:[1,2]})) // => undefined
* f("start", g({type:"Point", coordinates:[1,2]})) // => undefined
* f("centroid", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [2,3]
* f("centroid", g({type:"Polygon", coordinates:[[[1,2], [3,4], [1,2]]]})) // => [2,3]
* f("projected_centerpoint", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [1.9993137596003214,2.999313759600321]
* f("start", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [1,2]
* f("end", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [3,4]
*
*/
public static featureToCoordinateWithRenderingType(
feature: Feature,
location: "point" | "centroid" | "start" | "end" | "projected_centerpoint" | string
): [number, number] | undefined {
switch (location) {
case "point":
if (feature.geometry.type === "Point") {
return <[number, number]>feature.geometry.coordinates
}
return undefined
case "centroid":
if (feature.geometry.type === "Point") {
return undefined
}
return GeoOperations.centerpointCoordinates(feature)
case "projected_centerpoint":
if (
feature.geometry.type === "LineString" ||
feature.geometry.type === "MultiLineString"
) {
const centerpoint = GeoOperations.centerpointCoordinates(feature)
const projected = GeoOperations.nearestPoint(
<Feature<LineString>>feature,
centerpoint
)
return <[number, number]>projected.geometry.coordinates
}
return undefined
case "start":
if (feature.geometry.type === "LineString") {
return <[number, number]>feature.geometry.coordinates[0]
}
return undefined
case "end":
if (feature.geometry.type === "LineString") {
return <[number, number]>feature.geometry.coordinates.at(-1)
}
return undefined
default:
throw "Unkown location type: " + location
}
}
/**
* Constructs all tiles where features overlap with and puts those features in them.
* Long features (e.g. lines or polygons) which overlap with multiple tiles are referenced in each tile they overlap with
* @param zoomlevel
* @param features
*/
public static slice(zoomlevel: number, features: Feature[]): Map<number, Feature[]> {
const tiles = new Map<number, Feature[]>()
for (const feature of features) {
const bbox = BBox.get(feature)
Tiles.MapRange(Tiles.tileRangeFrom(bbox, zoomlevel), (x, y) => {
const i = Tiles.tile_index(zoomlevel, x, y)
let tiledata = tiles.get(i)
if (tiledata === undefined) {
tiledata = []
tiles.set(i, tiledata)
}
tiledata.push(feature)
})
}
return tiles
}
/**
* Creates a linestring object based on the outer ring of the given polygon
*
* Returns the argument if not a polygon
* @param p
*/
public static outerRing<P>(p: Feature<Polygon | LineString, P>): Feature<LineString, P> {
if (p.geometry.type !== "Polygon") {
return <Feature<LineString, P>>p
}
return {
type: "Feature",
properties: p.properties,
geometry: {
type: "LineString",
coordinates: p.geometry.coordinates[0],
},
}
}
static centerpointCoordinatesObj(geojson: Feature) {
const [lon, lat] = GeoOperations.centerpointCoordinates(geojson)
return { lon, lat }
}
/**
* Helper function which does the heavy lifting for 'inside'
*/
private static pointInPolygonCoordinates(
x: number,
y: number,
coordinates: [number, number][][]
): boolean {
const inside = GeoOperations.pointWithinRing(
x,
y,
/*This is the outer ring of the polygon */ coordinates[0]
)
if (!inside) {
return false
}
for (let i = 1; i < coordinates.length; i++) {
const inHole = GeoOperations.pointWithinRing(
x,
y,
coordinates[i] /* These are inner rings, aka holes*/
)
if (inHole) {
return false
}
}
return true
}
private static pointWithinRing(x: number, y: number, ring: [number, number][]) {
let inside = false
for (let i = 0, j = ring.length - 1; i < ring.length; j = i++) {
const coori = ring[i]
const coorj = ring[j]
const xi = coori[0]
const yi = coori[1]
const xj = coorj[0]
const yj = coorj[1]
const intersect = yi > y != yj > y && x < ((xj - xi) * (y - yi)) / (yj - yi) + xi
if (intersect) {
inside = !inside
}
}
return inside
}
/**
* Calculates the intersection between two features.
* Returns the length if intersecting a linestring and a (multi)polygon (in meters), returns a surface area (in m²) if intersecting two (multi)polygons
* Returns 0 if both are linestrings
* Returns null if the features are not intersecting
*/
private static calculateInstersection(
feature,
otherFeature,
featureBBox: BBox,
otherFeatureBBox?: BBox
): number {
if (feature.geometry.type === "LineString") {
otherFeatureBBox = otherFeatureBBox ?? BBox.get(otherFeature)
const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
if (!overlaps) {
return null
}
// Calculate the length of the intersection
let intersectionPoints = turf.lineIntersect(feature, otherFeature)
if (intersectionPoints.features.length == 0) {
// No intersections.
// If one point is inside of the polygon, all points are
const coors = feature.geometry.coordinates
const startCoor = coors[0]
if (this.inside(startCoor, otherFeature)) {
return this.lengthInMeters(feature)
}
return null
}
let intersectionPointsArray = intersectionPoints.features.map((d) => {
return d.geometry.coordinates
})
if (otherFeature.geometry.type === "LineString") {
if (intersectionPointsArray.length > 0) {
return 0
}
return null
}
if (intersectionPointsArray.length == 1) {
// We need to add the start- or endpoint of the current feature, depending on which one is embedded
const coors = feature.geometry.coordinates
const startCoor = coors[0]
if (this.inside(startCoor, otherFeature)) {
// The startpoint is embedded
intersectionPointsArray.push(startCoor)
} else {
intersectionPointsArray.push(coors[coors.length - 1])
}
}
let intersection = turf.lineSlice(
turf.point(intersectionPointsArray[0]),
turf.point(intersectionPointsArray[1]),
feature
)
if (intersection == null) {
return null
}
const intersectionSize = turf.length(intersection) // in km
return intersectionSize * 1000
}
if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
const otherFeatureBBox = BBox.get(otherFeature)
const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
if (!overlaps) {
return null
}
if (otherFeature.geometry.type === "LineString") {
return this.calculateInstersection(
otherFeature,
feature,
otherFeatureBBox,
featureBBox
)
}
try {
const intersection = turf.intersect(feature, otherFeature)
if (intersection == null) {
return null
}
return turf.area(intersection) // in m²
} catch (e) {
if (e.message === "Each LinearRing of a Polygon must have 4 or more Positions.") {
// WORKAROUND TIME!
// See https://github.com/Turfjs/turf/pull/2238
return null
}
throw e
}
}
throw "CalculateIntersection fallthrough: can not calculate an intersection between features"
}
}