mapcomplete/Docs/Tools/csvGrapher.py
2021-03-13 17:25:21 +01:00

315 lines
11 KiB
Python

import csv
from datetime import datetime
from matplotlib import pyplot
def counts(lst):
counts = {}
for v in lst:
if not v in counts:
counts[v] = 0
counts[v] += 1
return counts
class Hist:
def __init__(self, firstcolumn):
self.key = "\"" + firstcolumn + "\""
self.dictionary = {}
self.key = ""
def add(self, key, value):
if not key in self.dictionary:
self.dictionary[key] = []
self.dictionary[key].append(value)
def values(self):
allV = []
for v in self.dictionary.values():
allV += list(set(v))
return list(set(allV))
def keys(self):
return self.dictionary.keys()
def get(self, key):
if key in self.dictionary:
return self.dictionary[key]
return None
# Returns (keys, values.map(f)). To be used with e.g. pyplot.plot
def map(self, f):
vals = []
keys = self.keys()
for key in keys:
vals.append(f(self.get(key)))
return vals
def mapcumul(self, f, add, zero):
vals = []
running_value = zero
keys = self.keys()
for key in keys:
v = f(self.get(key))
running_value = add(running_value, v)
vals.append(running_value)
return vals
def csv(self):
csv = self.key + "," + ",".join(self.values())
header = self.values()
for k in self.dictionary.keys():
csv += k
values = counts(self.dictionary[k])
for head in header:
if head in values:
csv += "," + str(values[head])
else:
csv += ",0"
csv += "\n"
return csv
def __str__(self):
return str(self.dictionary)
def build_hist(stats, keyIndex, valueIndex):
hist = Hist("date")
c = 0
for row in stats:
c += 1
hist.add(row[keyIndex], row[valueIndex])
return hist
def as_date(str):
return datetime.strptime(str, "%Y-%m-%d")
def cumulative_users(stats):
users_hist = build_hist(stats, 0, 1)
all_users_per_day = users_hist.mapcumul(
lambda users: set(users),
lambda a, b: a.union(b),
set([])
)
cumul_uniq = list(map(len, all_users_per_day))
unique_per_day = users_hist.map(lambda users: len(set(users)))
new_users = [0]
for i in range(len(cumul_uniq) - 1):
new_users.append(cumul_uniq[i + 1] - cumul_uniq[i])
dates = map(as_date, users_hist.keys())
return list(dates), cumul_uniq, list(unique_per_day), list(new_users)
def pyplot_init():
pyplot.figure(figsize=(14, 8), dpi=200)
pyplot.xticks(rotation='vertical')
pyplot.tight_layout()
def create_usercount_graphs(stats, extra_text=""):
print("Creating usercount graphs " + extra_text)
dates, cumul_uniq, unique_per_day, new_users = cumulative_users(stats)
total = cumul_uniq[-1]
pyplot_init()
pyplot.fill_between(dates, unique_per_day, label='Unique contributors')
pyplot.fill_between(dates, new_users, label='First time contributor via MapComplete')
pyplot.legend()
pyplot.title("Unique contributors" + extra_text + ' with MapComplete (' + str(total) + ' contributors)')
pyplot.ylabel("Number of unique contributors")
pyplot.xlabel("Date")
pyplot.savefig("Contributors" + extra_text + ".png", dpi=400, facecolor='w', edgecolor='w', bbox_inches='tight')
pyplot_init()
pyplot.plot(dates, cumul_uniq, label='Cumulative unique contributors')
pyplot.legend()
pyplot.title("Cumulative unique contributors" + extra_text + " with MapComplete - " + str(total) + " contributors")
pyplot.ylabel("Number of unique contributors")
pyplot.xlabel("Date")
pyplot.savefig("CumulativeContributors" + extra_text + ".png", dpi=400, facecolor='w', edgecolor='w',
bbox_inches='tight')
def create_theme_breakdown(stats, fileExtra="", cutoff=5):
print("Creating theme breakdown " + fileExtra)
themeCounts = {}
for row in stats:
theme = row[3].lower()
if theme in theme_remappings:
theme = theme_remappings[theme]
if theme in themeCounts:
themeCounts[theme] += 1
else:
themeCounts[theme] = 1
themes = list(themeCounts.items())
if len(themes) == 0:
print("No entries found for theme breakdown (extra: " + str(fileExtra) + ")")
return
themes.sort(key=lambda kv: kv[1], reverse=True)
other_count = sum([theme[1] for theme in themes if theme[1] < cutoff])
themes_filtered = [theme for theme in themes if theme[1] >= cutoff]
keys = list(map(lambda kv: kv[0] + " (" + str(kv[1]) + ")", themes_filtered))
values = list(map(lambda kv: kv[1], themes_filtered))
total = sum(map(lambda kv: kv[1], themes))
first_pct = themes[0][1] / total;
if other_count > 0:
keys.append("other")
values.append(other_count)
pyplot_init()
pyplot.pie(values, labels=keys, startangle=(90 - 360 * first_pct / 2))
pyplot.title("MapComplete changes per theme" + fileExtra + " - " + str(total) + " total changes")
pyplot.savefig("Theme distribution" + fileExtra + ".png", dpi=400, facecolor='w', edgecolor='w',
bbox_inches='tight')
return themes
def cumulative_changes_per(contents, index, subject, filenameextra="", cutoff=5, cumulative=True):
print("Creating graph about " + subject + filenameextra)
themes = Hist("date")
dates_per_theme = Hist("theme")
all_themes = set()
for row in contents:
th = row[index]
all_themes.add(th)
themes.add(as_date(row[0]), th)
dates_per_theme.add(th, row[0])
per_theme_count = list(zip(dates_per_theme.keys(), dates_per_theme.map(len)))
# PerThemeCount gives the most popular theme first
per_theme_count.sort(key=lambda kv: kv[1], reverse=False)
values_to_show = [] # (theme name, value to fill between - this is stacked, with the first layer to print last)
running_totals = None
other_total = 0
other_theme_count = 0
other_cumul = None
for kv in per_theme_count:
theme = kv[0]
total_for_this_theme = kv[1]
if cumulative:
edits_per_day_cumul = themes.mapcumul(
lambda themes_for_date: len([x for x in themes_for_date if theme == x]),
lambda a, b: a + b, 0)
else:
edits_per_day_cumul = themes.map(lambda themes_for_date: len([x for x in themes_for_date if theme == x]))
if (not cumulative) or (running_totals is None):
running_totals = edits_per_day_cumul
else:
running_totals = list(map(lambda ab: ab[0] + ab[1], zip(running_totals, edits_per_day_cumul)))
if total_for_this_theme >= cutoff:
values_to_show.append((theme, running_totals))
else:
other_total += total_for_this_theme
other_theme_count += 1
if other_cumul is None:
other_cumul = edits_per_day_cumul
else:
other_cumul = list(map(lambda ab: ab[0] + ab[1], zip(other_cumul, edits_per_day_cumul)))
keys = list(themes.keys())
values_to_show.reverse()
values_to_show.append(("other", other_cumul))
totals = dict(per_theme_count)
total = sum(totals.values())
totals["other"] = other_total
pyplot_init()
for kv in values_to_show:
if kv[1] is None:
continue # No 'other' graph
msg = kv[0] + " (" + str(totals[kv[0]]) + ")"
if kv[0] == "other":
msg = str(other_theme_count) + " small " + subject + "s (" + str(other_total) + " changes)"
if cumulative:
pyplot.fill_between(keys, kv[1], label=msg)
else:
print("Keys:"+str(keys)+" "+str(kv[1]))
pyplot.plot(keys, kv[1], label=msg)
if cumulative:
cumulative_txt = "Cumulative changesets"
else:
cumulative_txt = "Changesets"
pyplot.title(cumulative_txt + " per " + subject + filenameextra + " (" + str(total) + " changesets)")
pyplot.legend(loc="upper left", ncol=3)
pyplot.savefig(cumulative_txt + " per " + subject + filenameextra + ".png")
def contents_where(contents, index, starts_with, invert=False):
for row in contents:
if row[index].startswith(starts_with) is not invert:
yield row
def create_graphs(contents):
create_usercount_graphs(contents)
create_theme_breakdown(contents)
cumulative_changes_per(contents, 3, "theme", cutoff=10)
cumulative_changes_per(contents, 3, "theme", cutoff=10, cumulative=False)
cumulative_changes_per(contents, 1, "contributor", cutoff=15)
cumulative_changes_per(contents, 2, "language", cutoff=1)
cumulative_changes_per(contents, 4, "version number", cutoff=1)
cumulative_changes_per(contents, 8, "host", cutoff=1)
currentYear = datetime.now().year
for year in range(2020, currentYear + 1):
contents_filtered = list(contents_where(contents, 0, str(year)))
extratext = " in " + str(year)
create_usercount_graphs(contents_filtered, extratext)
create_theme_breakdown(contents_filtered, extratext)
cumulative_changes_per(contents_filtered, 3, "theme", extratext, cutoff=5)
cumulative_changes_per(contents_filtered, 3, "theme", extratext, cutoff=5, cumulative=False)
cumulative_changes_per(contents_filtered, 1, "contributor", extratext, cutoff=10)
cumulative_changes_per(contents_filtered, 2, "language", extratext, cutoff=1)
cumulative_changes_per(contents_filtered, 4, "version number", extratext, cutoff=1, cumulative=False)
cumulative_changes_per(contents_filtered, 8, "host", extratext, cutoff=1)
theme_remappings = {
"metamap": "maps",
"groen": "buurtnatuur",
"wiki:mapcomplete/fritures": "fritures",
"wiki:MapComplete/Fritures": "fritures",
"lits": "lit",
"pomp": "cyclofix",
"wiki:user:joost_schouppe/campersite": "campersite",
"wiki-user-joost_schouppe-geveltuintjes": "geveltuintjes",
"wiki-user-joost_schouppe-campersite": "campersites",
"wiki-User-joost_schouppe-campersite": "campersites",
"wiki-User-joost_schouppe-geveltuintjes": "geveltuintjes",
"wiki:User:joost_schouppe/campersite": "campersites",
"https://raw.githubusercontent.com/osmbe/play/master/mapcomplete/geveltuinen/geveltuinen.json": "geveltuintjes"
}
def clean_input(contents):
for row in contents:
theme = row[3].strip().strip("\"").lower()
if theme == "null":
# The theme metadata has only been set later on - we fetch this from the comment
i = row[7].rfind("#")
theme = row[7][i + 1:-1].lower()
if theme in theme_remappings:
theme = theme_remappings[theme]
row[3] = theme
row[4] = row[4].strip().strip("\"")[0:len("MapComplete x.x.x")]
yield [data.strip().strip("\"") for data in row]
def main():
print("Creating graphs...")
with open('stats.csv', newline='') as csvfile:
stats = list(clean_input(csv.reader(csvfile, delimiter=',', quotechar='"')))
print("Found " + str(len(stats)) + " changesets")
create_graphs(stats)
print("All done!")
# pyplot.fill_between(range(0,5), [1,2,3,3,2],)
# pyplot.show()
main()