359 lines
16 KiB
TypeScript
359 lines
16 KiB
TypeScript
import {GeoOperations} from "./GeoOperations";
|
|
import Combine from "../UI/Base/Combine";
|
|
import RelationsTracker from "./Osm/RelationsTracker";
|
|
import State from "../State";
|
|
import BaseUIElement from "../UI/BaseUIElement";
|
|
import List from "../UI/Base/List";
|
|
import Title from "../UI/Base/Title";
|
|
import {UIEventSourceTools} from "./UIEventSource";
|
|
import AspectedRouting from "./Osm/aspectedRouting";
|
|
import {BBox} from "./BBox";
|
|
|
|
export interface ExtraFuncParams {
|
|
/**
|
|
* Gets all the features from the given layer within the given BBOX.
|
|
* Note that more features then requested can be given back.
|
|
* Format: [ [ geojson, geojson, geojson, ... ], [geojson, ...], ...]
|
|
*/
|
|
getFeaturesWithin: (layerId: string, bbox: BBox) => any[][],
|
|
memberships: RelationsTracker
|
|
}
|
|
|
|
|
|
export class ExtraFunction {
|
|
|
|
|
|
static readonly intro = new Combine([
|
|
new Title("Calculating tags with Javascript", 2),
|
|
"In some cases, it is useful to have some tags calculated based on other properties. Some useful tags are available by default (e.g. `lat`, `lon`, `_country`), as detailed above.",
|
|
"It is also possible to calculate your own tags - but this requires some javascript knowledge.",
|
|
"",
|
|
"Before proceeding, some warnings:",
|
|
new List([
|
|
"DO NOT DO THIS AS BEGINNER",
|
|
"**Only do this if all other techniques fail** This should _not_ be done to create a rendering effect, only to calculate a specific value",
|
|
"**THIS MIGHT BE DISABLED WITHOUT ANY NOTICE ON UNOFFICIAL THEMES** As unofficial themes might be loaded from the internet, this is the equivalent of injecting arbitrary code into the client. It'll be disabled if abuse occurs."
|
|
]),
|
|
"To enable this feature, add a field `calculatedTags` in the layer object, e.g.:",
|
|
"````",
|
|
"\"calculatedTags\": [",
|
|
" \"_someKey=javascript-expression\",",
|
|
" \"name=feat.properties.name ?? feat.properties.ref ?? feat.properties.operator\",",
|
|
" \"_distanceCloserThen3Km=feat.distanceTo( some_lon, some_lat) < 3 ? 'yes' : 'no'\" ",
|
|
" ]",
|
|
"````",
|
|
"",
|
|
"The above code will be executed for every feature in the layer. The feature is accessible as `feat` and is an amended geojson object:",
|
|
|
|
new List([
|
|
"`area` contains the surface area (in square meters) of the object",
|
|
"`lat` and `lon` contain the latitude and longitude"
|
|
]),
|
|
"Some advanced functions are available on **feat** as well:"
|
|
]).SetClass("flex-col").AsMarkdown();
|
|
|
|
|
|
private static readonly OverlapFunc = new ExtraFunction(
|
|
{
|
|
name: "overlapWith",
|
|
doc: "Gives a list of features from the specified layer which this feature (partly) overlaps with. " +
|
|
"If the current feature is a point, all features that embed the point are given. " +
|
|
"The returned value is `{ feat: GeoJSONFeature, overlap: number}[]` where `overlap` is the overlapping surface are (in m²) for areas, the overlapping length (in meter) if the current feature is a line or `undefined` if the current feature is a point.\n" +
|
|
"\n" +
|
|
"For example to get all objects which overlap or embed from a layer, use `_contained_climbing_routes_properties=feat.overlapWith('climbing_route')`",
|
|
args: ["...layerIds - one or more layer ids of the layer from which every feature is checked for overlap)"]
|
|
},
|
|
(params, feat) => {
|
|
return (...layerIds: string[]) => {
|
|
const result = []
|
|
|
|
const bbox = BBox.get(feat)
|
|
|
|
for (const layerId of layerIds) {
|
|
const otherLayers = params.getFeaturesWithin(layerId, bbox)
|
|
if (otherLayers === undefined) {
|
|
continue;
|
|
}
|
|
if (otherLayers.length === 0) {
|
|
continue;
|
|
}
|
|
for (const otherLayer of otherLayers) {
|
|
result.push(...GeoOperations.calculateOverlap(feat, otherLayer));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
)
|
|
private static readonly DistanceToFunc = new ExtraFunction(
|
|
{
|
|
name: "distanceTo",
|
|
doc: "Calculates the distance between the feature and a specified point in kilometer. The input should either be a pair of coordinates, a geojson feature or the ID of an object",
|
|
args: ["feature OR featureID OR longitude", "undefined OR latitude"]
|
|
},
|
|
(featuresPerLayer, feature) => {
|
|
return (arg0, lat) => {
|
|
if (arg0 === undefined) {
|
|
return undefined;
|
|
}
|
|
if (typeof arg0 === "number") {
|
|
// Feature._lon and ._lat is conveniently place by one of the other metatags
|
|
return GeoOperations.distanceBetween([arg0, lat], [feature._lon, feature._lat]);
|
|
}
|
|
if (typeof arg0 === "string") {
|
|
// This is an identifier
|
|
const feature = State.state.allElements.ContainingFeatures.get(arg0);
|
|
if (feature === undefined) {
|
|
return undefined;
|
|
}
|
|
arg0 = feature;
|
|
}
|
|
|
|
// arg0 is probably a feature
|
|
return GeoOperations.distanceBetween(GeoOperations.centerpointCoordinates(arg0), [feature._lon, feature._lat])
|
|
|
|
}
|
|
}
|
|
)
|
|
private static readonly ClosestObjectFunc = new ExtraFunction(
|
|
{
|
|
name: "closest",
|
|
doc: "Given either a list of geojson features or a single layer name, gives the single object which is nearest to the feature. In the case of ways/polygons, only the centerpoint is considered. Returns a single geojson feature or undefined if nothing is found (or not yet laoded)",
|
|
args: ["list of features"]
|
|
},
|
|
(params, feature) => {
|
|
return (features) => ExtraFunction.GetClosestNFeatures(params, feature, features)?.[0]?.feat
|
|
}
|
|
)
|
|
|
|
private static readonly ClosestNObjectFunc = new ExtraFunction(
|
|
{
|
|
name: "closestn",
|
|
doc: "Given either a list of geojson features or a single layer name, gives the n closest objects which are nearest to the feature (excluding the feature itself). In the case of ways/polygons, only the centerpoint is considered. " +
|
|
"Returns a list of `{feat: geojson, distance:number}` the empty list if nothing is found (or not yet loaded)\n\n" +
|
|
"If a 'unique tag key' is given, the tag with this key will only appear once (e.g. if 'name' is given, all features will have a different name)",
|
|
args: ["list of features or layer name", "amount of features", "unique tag key (optional)", "maxDistanceInMeters (optional)"]
|
|
},
|
|
(params, feature) => {
|
|
|
|
return (features, amount, uniqueTag, maxDistanceInMeters) => {
|
|
let distance : number = Number(maxDistanceInMeters)
|
|
if(isNaN(distance)){
|
|
distance = undefined
|
|
}
|
|
return ExtraFunction.GetClosestNFeatures(params, feature, features, {
|
|
maxFeatures: Number(amount),
|
|
uniqueTag: uniqueTag,
|
|
maxDistance: distance
|
|
});
|
|
}
|
|
}
|
|
)
|
|
|
|
private static readonly Memberships = new ExtraFunction(
|
|
{
|
|
name: "memberships",
|
|
doc: "Gives a list of `{role: string, relation: Relation}`-objects, containing all the relations that this feature is part of. " +
|
|
"\n\n" +
|
|
"For example: `_part_of_walking_routes=feat.memberships().map(r => r.relation.tags.name).join(';')`",
|
|
args: []
|
|
},
|
|
(params, feat) => {
|
|
return () =>
|
|
params.memberships.knownRelations.data.get(feat.properties.id) ?? []
|
|
|
|
}
|
|
)
|
|
private static readonly AspectedRouting = new ExtraFunction(
|
|
{
|
|
name: "score",
|
|
doc: "Given the path of an aspected routing json file, will calculate the score. This score is wrapped in a UIEventSource, so for further calculations, use `.map(score => ...)`" +
|
|
"\n\n" +
|
|
"For example: `_comfort_score=feat.score('https://raw.githubusercontent.com/pietervdvn/AspectedRouting/master/Examples/bicycle/aspects/bicycle.comfort.json')`",
|
|
args: ["path"]
|
|
},
|
|
(_, feature) => {
|
|
return (path) => {
|
|
return UIEventSourceTools.downloadJsonCached(path).map(config => {
|
|
if (config === undefined) {
|
|
return
|
|
}
|
|
return new AspectedRouting(config).evaluate(feature.properties)
|
|
})
|
|
}
|
|
}
|
|
)
|
|
private static readonly allFuncs: ExtraFunction[] = [
|
|
ExtraFunction.DistanceToFunc,
|
|
ExtraFunction.OverlapFunc,
|
|
ExtraFunction.ClosestObjectFunc,
|
|
ExtraFunction.ClosestNObjectFunc,
|
|
ExtraFunction.Memberships,
|
|
ExtraFunction.AspectedRouting
|
|
];
|
|
private readonly _name: string;
|
|
private readonly _args: string[];
|
|
private readonly _doc: string;
|
|
private readonly _f: (params: ExtraFuncParams, feat: any) => any;
|
|
|
|
constructor(options: { name: string, doc: string, args: string[] },
|
|
f: ((params: ExtraFuncParams, feat: any) => any)) {
|
|
this._name = options.name;
|
|
this._doc = options.doc;
|
|
this._args = options.args;
|
|
this._f = f;
|
|
}
|
|
|
|
public static FullPatchFeature(params: ExtraFuncParams, feature) {
|
|
for (const func of ExtraFunction.allFuncs) {
|
|
func.PatchFeature(params, feature);
|
|
}
|
|
}
|
|
|
|
public static HelpText(): BaseUIElement {
|
|
|
|
const elems = []
|
|
for (const func of ExtraFunction.allFuncs) {
|
|
elems.push(new Title(func._name, 3),
|
|
func._doc,
|
|
new List(func._args, true))
|
|
}
|
|
|
|
return new Combine([
|
|
ExtraFunction.intro,
|
|
new List(ExtraFunction.allFuncs.map(func => func._name)),
|
|
...elems
|
|
]);
|
|
}
|
|
|
|
/**
|
|
* Gets the closes N features, sorted by ascending distance.
|
|
*
|
|
* @param params: The link to mapcomplete state
|
|
* @param feature: The central feature under consideration
|
|
* @param features: The other features
|
|
* @param options: maxFeatures: The maximum amount of features to be returned. Default: 1; uniqueTag: returned features are not allowed to have the same value for this key; maxDistance: stop searching if it is too far away (in meter). Default: 500m
|
|
* @constructor
|
|
* @private
|
|
*/
|
|
private static GetClosestNFeatures(params: ExtraFuncParams,
|
|
feature: any,
|
|
features: string | any[],
|
|
options?: { maxFeatures?: number, uniqueTag?: string | undefined, maxDistance?: number }): { feat: any, distance: number }[] {
|
|
const maxFeatures = options?.maxFeatures ?? 1
|
|
const maxDistance = options?.maxDistance ?? 500
|
|
const uniqueTag: string | undefined = options?.uniqueTag
|
|
if (typeof features === "string") {
|
|
const name = features
|
|
const bbox = GeoOperations.bbox(GeoOperations.buffer(GeoOperations.bbox(feature), maxDistance))
|
|
features = params.getFeaturesWithin(name, new BBox(bbox.geometry.coordinates))
|
|
}else{
|
|
features = [features]
|
|
}
|
|
if (features === undefined) {
|
|
return;
|
|
}
|
|
|
|
let closestFeatures: { feat: any, distance: number }[] = [];
|
|
for(const featureList of features) {
|
|
for (const otherFeature of featureList) {
|
|
if (otherFeature === feature || otherFeature.id === feature.id) {
|
|
continue; // We ignore self
|
|
}
|
|
let distance = undefined;
|
|
if (otherFeature._lon !== undefined && otherFeature._lat !== undefined) {
|
|
distance = GeoOperations.distanceBetween([otherFeature._lon, otherFeature._lat], [feature._lon, feature._lat]);
|
|
} else {
|
|
distance = GeoOperations.distanceBetween(
|
|
GeoOperations.centerpointCoordinates(otherFeature),
|
|
[feature._lon, feature._lat]
|
|
)
|
|
}
|
|
if (distance === undefined || distance === null) {
|
|
console.error("Could not calculate the distance between", feature, "and", otherFeature)
|
|
throw "Undefined distance!"
|
|
}
|
|
if (distance > maxDistance) {
|
|
continue
|
|
}
|
|
|
|
if (closestFeatures.length === 0) {
|
|
closestFeatures.push({
|
|
feat: otherFeature,
|
|
distance: distance
|
|
})
|
|
continue;
|
|
}
|
|
|
|
if (closestFeatures.length >= maxFeatures && closestFeatures[maxFeatures - 1].distance < distance) {
|
|
// The last feature of the list (and thus the furthest away is still closer
|
|
// No use for checking, as we already have plenty of features!
|
|
continue
|
|
}
|
|
|
|
let targetIndex = closestFeatures.length
|
|
for (let i = 0; i < closestFeatures.length; i++) {
|
|
const closestFeature = closestFeatures[i];
|
|
|
|
if (uniqueTag !== undefined) {
|
|
const uniqueTagsMatch = otherFeature.properties[uniqueTag] !== undefined &&
|
|
closestFeature.feat.properties[uniqueTag] === otherFeature.properties[uniqueTag]
|
|
if (uniqueTagsMatch) {
|
|
targetIndex = -1
|
|
if (closestFeature.distance > distance) {
|
|
// This is a very special situation:
|
|
// We want to see the tag `uniquetag=some_value` only once in the entire list (e.g. to prevent road segements of identical names to fill up the list of 'names of nearby roads')
|
|
// AT this point, we have found a closer segment with the same, identical tag
|
|
// so we replace directly
|
|
closestFeatures[i] = {feat: otherFeature, distance: distance}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (closestFeature.distance > distance) {
|
|
targetIndex = i
|
|
|
|
if (uniqueTag !== undefined) {
|
|
const uniqueValue = otherFeature.properties[uniqueTag]
|
|
// We might still have some other values later one with the same uniquetag that have to be cleaned
|
|
for (let j = i; j < closestFeatures.length; j++) {
|
|
if (closestFeatures[j].feat.properties[uniqueTag] === uniqueValue) {
|
|
closestFeatures.splice(j, 1)
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (targetIndex == -1) {
|
|
continue; // value is already swapped by the unique tag
|
|
}
|
|
|
|
if (targetIndex < maxFeatures) {
|
|
// insert and drop one
|
|
closestFeatures.splice(targetIndex, 0, {
|
|
feat: otherFeature,
|
|
distance: distance
|
|
})
|
|
if (closestFeatures.length >= maxFeatures) {
|
|
closestFeatures.splice(maxFeatures, 1)
|
|
}
|
|
} else {
|
|
// Overwrite the last element
|
|
closestFeatures[targetIndex] = {
|
|
feat: otherFeature,
|
|
distance: distance
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
return closestFeatures;
|
|
}
|
|
|
|
public PatchFeature(params: ExtraFuncParams, feature: any) {
|
|
feature[this._name] = this._f(params, feature)
|
|
}
|
|
}
|