334 lines
11 KiB
C
334 lines
11 KiB
C
#ifndef DRIVERS_NETWORKING_E1000_C
|
|
#define DRIVERS_NETWORKING_E1000_C
|
|
|
|
#include "../../inline_asm.c"
|
|
#include "../pci/pci.c"
|
|
|
|
#define E1000_NUM_RX_DESC 32
|
|
#define E1000_NUM_TX_DESC 8
|
|
|
|
static uint32_t e1000_device_pci = 0x00000000;
|
|
static uintptr_t mem_base = 0;
|
|
static int has_eeprom = 0;
|
|
static uint8_t e1000_mac[6];
|
|
|
|
// Aligned alloc
|
|
void* valloc(unsigned int size, int i) {
|
|
uint32_t addr = (uint32_t) alloc(size + (1 << i));
|
|
addr = (((addr - 1) >> i) + 1 ) << i;
|
|
return (void*) addr;
|
|
}
|
|
|
|
struct rx_desc {
|
|
volatile uint64_t addr;
|
|
volatile uint16_t length;
|
|
volatile uint16_t checksum;
|
|
volatile uint8_t status;
|
|
volatile uint8_t errors;
|
|
volatile uint16_t special;
|
|
} __attribute__((packed));
|
|
|
|
struct tx_desc {
|
|
volatile uint64_t addr;
|
|
volatile uint16_t length;
|
|
volatile uint8_t cso;
|
|
volatile uint8_t cmd;
|
|
volatile uint8_t status;
|
|
volatile uint8_t css;
|
|
volatile uint16_t special;
|
|
} __attribute__((packed));
|
|
|
|
static uint8_t * rx_virt[E1000_NUM_RX_DESC];
|
|
static uint8_t * tx_virt[E1000_NUM_TX_DESC];
|
|
static struct rx_desc * rx;
|
|
static struct tx_desc * tx;
|
|
static uintptr_t rx_phys;
|
|
static uintptr_t tx_phys;
|
|
|
|
#define E1000_REG_CTRL 0x0000
|
|
#define E1000_REG_STATUS 0x0008
|
|
#define E1000_REG_EEPROM 0x0014
|
|
#define E1000_REG_CTRL_EXT 0x0018
|
|
|
|
#define E1000_REG_RCTRL 0x0100
|
|
#define E1000_REG_RXDESCLO 0x2800
|
|
#define E1000_REG_RXDESCHI 0x2804
|
|
#define E1000_REG_RXDESCLEN 0x2808
|
|
#define E1000_REG_RXDESCHEAD 0x2810
|
|
#define E1000_REG_RXDESCTAIL 0x2818
|
|
|
|
#define E1000_REG_TCTRL 0x0400
|
|
#define E1000_REG_TXDESCLO 0x3800
|
|
#define E1000_REG_TXDESCHI 0x3804
|
|
#define E1000_REG_TXDESCLEN 0x3808
|
|
#define E1000_REG_TXDESCHEAD 0x3810
|
|
#define E1000_REG_TXDESCTAIL 0x3818
|
|
|
|
#define E1000_REG_RXADDR 0x5400
|
|
|
|
#define RCTL_EN (1 << 1) /* Receiver Enable */
|
|
#define RCTL_SBP (1 << 2) /* Store Bad Packets */
|
|
#define RCTL_UPE (1 << 3) /* Unicast Promiscuous Enabled */
|
|
#define RCTL_MPE (1 << 4) /* Multicast Promiscuous Enabled */
|
|
#define RCTL_LPE (1 << 5) /* Long Packet Reception Enable */
|
|
#define RCTL_LBM_NONE (0 << 6) /* No Loopback */
|
|
#define RCTL_LBM_PHY (3 << 6) /* PHY or external SerDesc loopback */
|
|
#define RTCL_RDMTS_HALF (0 << 8) /* Free Buffer Threshold is 1/2 of RDLEN */
|
|
#define RTCL_RDMTS_QUARTER (1 << 8) /* Free Buffer Threshold is 1/4 of RDLEN */
|
|
#define RTCL_RDMTS_EIGHTH (2 << 8) /* Free Buffer Threshold is 1/8 of RDLEN */
|
|
#define RCTL_MO_36 (0 << 12) /* Multicast Offset - bits 47:36 */
|
|
#define RCTL_MO_35 (1 << 12) /* Multicast Offset - bits 46:35 */
|
|
#define RCTL_MO_34 (2 << 12) /* Multicast Offset - bits 45:34 */
|
|
#define RCTL_MO_32 (3 << 12) /* Multicast Offset - bits 43:32 */
|
|
#define RCTL_BAM (1 << 15) /* Broadcast Accept Mode */
|
|
#define RCTL_VFE (1 << 18) /* VLAN Filter Enable */
|
|
#define RCTL_CFIEN (1 << 19) /* Canonical Form Indicator Enable */
|
|
#define RCTL_CFI (1 << 20) /* Canonical Form Indicator Bit Value */
|
|
#define RCTL_DPF (1 << 22) /* Discard Pause Frames */
|
|
#define RCTL_PMCF (1 << 23) /* Pass MAC Control Frames */
|
|
#define RCTL_SECRC (1 << 26) /* Strip Ethernet CRC */
|
|
|
|
#define RCTL_BSIZE_256 (3 << 16)
|
|
#define RCTL_BSIZE_512 (2 << 16)
|
|
#define RCTL_BSIZE_1024 (1 << 16)
|
|
#define RCTL_BSIZE_2048 (0 << 16)
|
|
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
|
|
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
|
|
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
|
|
|
|
#define TCTL_EN (1 << 1) /* Transmit Enable */
|
|
#define TCTL_PSP (1 << 3) /* Pad Short Packets */
|
|
#define TCTL_CT_SHIFT 4 /* Collision Threshold */
|
|
#define TCTL_COLD_SHIFT 12 /* Collision Distance */
|
|
#define TCTL_SWXOFF (1 << 22) /* Software XOFF Transmission */
|
|
#define TCTL_RTLC (1 << 24) /* Re-transmit on Late Collision */
|
|
|
|
#define CMD_EOP (1 << 0) /* End of Packet */
|
|
#define CMD_IFCS (1 << 1) /* Insert FCS */
|
|
#define CMD_IC (1 << 2) /* Insert Checksum */
|
|
#define CMD_RS (1 << 3) /* Report Status */
|
|
#define CMD_RPS (1 << 4) /* Report Packet Sent */
|
|
#define CMD_VLE (1 << 6) /* VLAN Packet Enable */
|
|
#define CMD_IDE (1 << 7) /* Interrupt Delay Enable */
|
|
|
|
#define RX_STATUS_DD (1 << 0) /* Descriptor done */
|
|
|
|
#define STATUS_LINK_UP (1 << 1) /* Link Up */
|
|
|
|
static void write_command(uint16_t addr, uint32_t val) {
|
|
(*((volatile uint32_t*)(mem_base + addr))) = val;
|
|
}
|
|
|
|
static uint32_t read_command(uint16_t addr) {
|
|
return *((volatile uint32_t*)(mem_base + addr));
|
|
}
|
|
|
|
static int eeprom_detect(void) {
|
|
|
|
write_command(E1000_REG_EEPROM, 1);
|
|
|
|
for (int i = 0; i < 100000 && !has_eeprom; ++i) {
|
|
uint32_t val = read_command(E1000_REG_EEPROM);
|
|
if (val & 0x10) has_eeprom = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t eeprom_read(uint8_t addr) {
|
|
uint32_t temp = 0;
|
|
write_command(E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
|
|
while (!((temp = read_command(E1000_REG_EEPROM)) & (1 << 4)));
|
|
return (uint16_t)((temp >> 16) & 0xFFFF);
|
|
}
|
|
|
|
|
|
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
|
|
if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea)) {
|
|
*((uint32_t *)extra) = device;
|
|
}
|
|
}
|
|
|
|
static void write_mac(void) {
|
|
|
|
uint32_t low;
|
|
uint32_t high;
|
|
|
|
memcpy(&low, &e1000_mac[0], 4);
|
|
memcpy(&high,&e1000_mac[4], 2);
|
|
memset((uint8_t *)&high + 2, 0, 2);
|
|
high |= 0x80000000;
|
|
|
|
write_command(E1000_REG_RXADDR + 0, low);
|
|
write_command(E1000_REG_RXADDR + 4, high);
|
|
}
|
|
|
|
static void read_mac(void) {
|
|
if (has_eeprom) {
|
|
for (int i = 0; i < 3; i++) {
|
|
uint32_t part = eeprom_read(i);
|
|
e1000_mac[2*i] = part & 0xFF;
|
|
e1000_mac[2*i + 1] = (part >> 8) & 0xFF;
|
|
}
|
|
} else {
|
|
uint8_t* mac_addr = (uint8_t*)(mem_base + E1000_REG_RXADDR);
|
|
for (int i = 0; i < 6; ++i) {
|
|
e1000_mac[i] = mac_addr[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Receives a packet, returning the size of the packet or 0 if no packet was received
|
|
// User is responsible for freeing the buffer that we will allocate
|
|
static size_t receive_packet(uint8_t** payload) {
|
|
uint32_t rx_index = read_command(E1000_REG_RXDESCTAIL);
|
|
if (rx_index == read_command(E1000_REG_RXDESCHEAD)) {
|
|
// head == tail, so the queue is empty
|
|
return 0;
|
|
}
|
|
|
|
rx_index = (rx_index + 1) % E1000_NUM_RX_DESC;
|
|
uint32_t packetstatus = rx[rx_index].status;
|
|
if (!(packetstatus & (RX_STATUS_DD))) {
|
|
// The network card isn't done receiving this packet
|
|
return 0;
|
|
}
|
|
// Normally, we would have to check if this is the end of the packet, but
|
|
// since we receive in chunks of 2048, an ethernet frame always fits in one chunk
|
|
uint8_t* packet_address = (uint8_t*) rx_virt[rx_index];
|
|
size_t size = (size_t) rx[rx_index].length;
|
|
void* user_packet = alloc(size);
|
|
memcpy(user_packet, packet_address, size);
|
|
|
|
// Set the status to done
|
|
rx[rx_index].status = 0;
|
|
|
|
// Update the network card's tail
|
|
write_command(E1000_REG_RXDESCTAIL, rx_index);
|
|
*payload = user_packet;
|
|
return size;
|
|
}
|
|
|
|
static void send_packet(uint8_t* payload, size_t payload_size) {
|
|
uint32_t tx_index = read_command(E1000_REG_TXDESCTAIL);
|
|
|
|
memcpy(tx_virt[tx_index], payload, payload_size);
|
|
tx[tx_index].length = payload_size;
|
|
// End Of Packet, let hardware generate checksum
|
|
tx[tx_index].cmd = CMD_EOP | CMD_IFCS;
|
|
tx[tx_index].status = 0;
|
|
|
|
tx_index = (tx_index + 1) % E1000_NUM_TX_DESC;
|
|
write_command(E1000_REG_TXDESCTAIL, tx_index);
|
|
}
|
|
|
|
static void init_rx(void) {
|
|
// Set physical address of receive FIFO
|
|
write_command(E1000_REG_RXDESCLO, rx_phys);
|
|
write_command(E1000_REG_RXDESCHI, 0);
|
|
|
|
write_command(E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct rx_desc));
|
|
|
|
// Initialize head and tail of receive FIFO
|
|
write_command(E1000_REG_RXDESCHEAD, 0);
|
|
write_command(E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
|
|
|
|
// Enable receiving, receive packets of up to 2048, allow receiving broadcast packets
|
|
write_command(E1000_REG_RCTRL,
|
|
RCTL_EN | RCTL_BSIZE_2048 | RCTL_BAM |
|
|
(read_command(E1000_REG_RCTRL)));
|
|
|
|
}
|
|
|
|
static void init_tx(void) {
|
|
|
|
// Set physical address of transmit FIFO
|
|
write_command(E1000_REG_TXDESCLO, tx_phys);
|
|
write_command(E1000_REG_TXDESCHI, 0);
|
|
|
|
write_command(E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct tx_desc));
|
|
|
|
// Initialize head and tail of transmit FIFO
|
|
write_command(E1000_REG_TXDESCHEAD, 0);
|
|
write_command(E1000_REG_TXDESCTAIL, 0);
|
|
|
|
// Enable transmitting, Pad Short Packets
|
|
write_command(E1000_REG_TCTRL,
|
|
TCTL_EN |
|
|
TCTL_PSP |
|
|
read_command(E1000_REG_TCTRL));
|
|
}
|
|
|
|
static int e1000_init_main(void) {
|
|
pci_scan(&find_e1000, -1, &e1000_device_pci);
|
|
|
|
if (!e1000_device_pci) {
|
|
terminal_writestring("No e1000 device found.");
|
|
return 1;
|
|
}
|
|
|
|
mem_base = pci_read_field(e1000_device_pci, PCI_BAR0, 4) & 0xFFFFFFF0;
|
|
|
|
// TODO mark page as cache-disabled
|
|
|
|
// TODO shrink network buffer size to RCTL_BSIZE_2048
|
|
// TODO align to paragraph instead of to page
|
|
|
|
// We don't do paging, so the virtual address = the physical address
|
|
rx = valloc(sizeof(struct rx_desc) * E1000_NUM_RX_DESC + 16, 12);
|
|
rx_phys = (uintptr_t) rx;
|
|
for (int i = 0; i < E1000_NUM_RX_DESC; i++) {
|
|
// Allocate a 2048-sized piece of memory, aligned (so the last 4 bits are 0)
|
|
rx_virt[i] = valloc(2048, 4);
|
|
rx[i].addr = (uintptr_t) rx_virt[i];
|
|
rx[i].status = 0;
|
|
}
|
|
|
|
tx = valloc(sizeof(struct tx_desc) * E1000_NUM_TX_DESC + 16, 12);
|
|
tx_phys = (uintptr_t) tx;
|
|
for (int i = 0; i < E1000_NUM_TX_DESC; i++) {
|
|
tx_virt[i] = valloc(2048, 4);
|
|
tx[i].addr = (uintptr_t) tx_virt[i];
|
|
tx[i].status = 0;
|
|
tx[i].cmd = (1 << 0);
|
|
}
|
|
|
|
// Enable PCI bus mastering
|
|
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
|
|
command_reg |= (1 << 2);
|
|
command_reg |= (1 << 0);
|
|
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
|
|
|
|
eeprom_detect();
|
|
|
|
terminal_writestring("EEPROM=");
|
|
terminal_writeint(has_eeprom, 10);
|
|
|
|
read_mac();
|
|
terminal_writestring(" MAC = ");
|
|
terminal_writeint(e1000_mac[0], 16);
|
|
terminal_writeint(e1000_mac[1], 16);
|
|
terminal_writeint(e1000_mac[2], 16);
|
|
terminal_writeint(e1000_mac[3], 16);
|
|
terminal_writeint(e1000_mac[4], 16);
|
|
terminal_writeint(e1000_mac[5], 16);
|
|
terminal_writestring("\n");
|
|
write_mac();
|
|
|
|
init_rx();
|
|
init_tx();
|
|
|
|
int networkstatus = read_command(E1000_REG_STATUS);
|
|
|
|
terminal_writestring("Network is ");
|
|
if (networkstatus) {
|
|
terminal_writestring("up!\n");
|
|
} else {
|
|
terminal_writestring("down :/ \n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // DRIVERS_NETWORKING_E1000_C
|