Compare commits
5 commits
master
...
networking
Author | SHA1 | Date | |
---|---|---|---|
3fb475dc70 | |||
269a45839c | |||
|
bda7eda76a | ||
|
bfc7754fab | ||
69c9b2c9ca |
13 changed files with 837 additions and 19 deletions
4
Makefile
4
Makefile
|
@ -1,8 +1,8 @@
|
|||
run: bin
|
||||
qemu-system-i386 -drive format=raw,file=target/boot.bin -monitor stdio
|
||||
qemu-system-i386 -vga std -nodefaults -drive format=raw,file=target/boot.bin -monitor stdio -device e1000,netdev=u1,mac=aa:bb:cc:dd:ee:ff -object filter-dump,id=f1,netdev=u1,file=/tmp/dump.pcap -netdev tap,id=u1,ifname=tap0,script=no,downscript=no
|
||||
|
||||
run_kernelonly: compile_kernel
|
||||
qemu-system-i386 -kernel target/kernel/kernel.bin -monitor stdio
|
||||
qemu-system-i386 -kernel target/kernel/kernel.bin -monitor stdio -vga std -nodefaults -device e1000,netdev=u1,mac=aa:bb:cc:dd:ee:ff -object filter-dump,id=f1,netdev=u1,file=/tmp/dump.dat -netdev tap,id=u1,ifname=tap0,script=no,downscript=no
|
||||
|
||||
debug_kernel: compile_kernel
|
||||
qemu-system-i386 -s -S -kernel target/kernel/kernel.bin
|
||||
|
|
|
@ -18,6 +18,8 @@ If you run `make bin`, it will generate `target/boot.bin`, this is a binary file
|
|||
In case there are errors in the bootloader you can use `make compile_kernel` to only compile the kernel.
|
||||
|
||||
To run TABS in the qemu simulator run `make run`.
|
||||
To test the operating system in QEMU, first set up a tap interface with the `create_tap.sh` script,
|
||||
then run `make run` or `make run_kernelonly`.
|
||||
|
||||
## Bootloader
|
||||
|
||||
|
@ -45,5 +47,8 @@ The kernel is based on [the bare bones kernel from the OSDev wiki](https://wiki.
|
|||
- [ ] Running executables from filesystem
|
||||
- [ ] Better memory management
|
||||
- [ ] Better shell
|
||||
- [X] A driver for E1000-type network cards
|
||||
- [X] sending packets
|
||||
- [X] receiving packets
|
||||
|
||||
As a test, I've implemented day 1 of [advent of code](https://adventofcode.com/) on the [AoC branch](https://github.com/Robbe7730/RoBoot/tree/AoC).
|
||||
|
|
5
create_tap.sh
Executable file
5
create_tap.sh
Executable file
|
@ -0,0 +1,5 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
sudo ip tuntap add dev tap0 mode tap
|
||||
sudo ip link set up dev tap0
|
||||
sudo chown $USER tap0
|
BIN
docs/8254x_GBe_SDM.pdf
Normal file
BIN
docs/8254x_GBe_SDM.pdf
Normal file
Binary file not shown.
334
kernel/drivers/networking/e1000.c
Normal file
334
kernel/drivers/networking/e1000.c
Normal file
|
@ -0,0 +1,334 @@
|
|||
#ifndef DRIVERS_NETWORKING_E1000_C
|
||||
#define DRIVERS_NETWORKING_E1000_C
|
||||
|
||||
#include "../../inline_asm.c"
|
||||
#include "../pci/pci.c"
|
||||
|
||||
#define E1000_NUM_RX_DESC 32
|
||||
#define E1000_NUM_TX_DESC 8
|
||||
|
||||
static uint32_t e1000_device_pci = 0x00000000;
|
||||
static uintptr_t mem_base = 0;
|
||||
static int has_eeprom = 0;
|
||||
static uint8_t e1000_mac[6];
|
||||
|
||||
// Aligned alloc
|
||||
void* valloc(unsigned int size, int i) {
|
||||
uint32_t addr = (uint32_t) alloc(size + (1 << i));
|
||||
addr = (((addr - 1) >> i) + 1 ) << i;
|
||||
return (void*) addr;
|
||||
}
|
||||
|
||||
struct rx_desc {
|
||||
volatile uint64_t addr;
|
||||
volatile uint16_t length;
|
||||
volatile uint16_t checksum;
|
||||
volatile uint8_t status;
|
||||
volatile uint8_t errors;
|
||||
volatile uint16_t special;
|
||||
} __attribute__((packed));
|
||||
|
||||
struct tx_desc {
|
||||
volatile uint64_t addr;
|
||||
volatile uint16_t length;
|
||||
volatile uint8_t cso;
|
||||
volatile uint8_t cmd;
|
||||
volatile uint8_t status;
|
||||
volatile uint8_t css;
|
||||
volatile uint16_t special;
|
||||
} __attribute__((packed));
|
||||
|
||||
static uint8_t * rx_virt[E1000_NUM_RX_DESC];
|
||||
static uint8_t * tx_virt[E1000_NUM_TX_DESC];
|
||||
static struct rx_desc * rx;
|
||||
static struct tx_desc * tx;
|
||||
static uintptr_t rx_phys;
|
||||
static uintptr_t tx_phys;
|
||||
|
||||
#define E1000_REG_CTRL 0x0000
|
||||
#define E1000_REG_STATUS 0x0008
|
||||
#define E1000_REG_EEPROM 0x0014
|
||||
#define E1000_REG_CTRL_EXT 0x0018
|
||||
|
||||
#define E1000_REG_RCTRL 0x0100
|
||||
#define E1000_REG_RXDESCLO 0x2800
|
||||
#define E1000_REG_RXDESCHI 0x2804
|
||||
#define E1000_REG_RXDESCLEN 0x2808
|
||||
#define E1000_REG_RXDESCHEAD 0x2810
|
||||
#define E1000_REG_RXDESCTAIL 0x2818
|
||||
|
||||
#define E1000_REG_TCTRL 0x0400
|
||||
#define E1000_REG_TXDESCLO 0x3800
|
||||
#define E1000_REG_TXDESCHI 0x3804
|
||||
#define E1000_REG_TXDESCLEN 0x3808
|
||||
#define E1000_REG_TXDESCHEAD 0x3810
|
||||
#define E1000_REG_TXDESCTAIL 0x3818
|
||||
|
||||
#define E1000_REG_RXADDR 0x5400
|
||||
|
||||
#define RCTL_EN (1 << 1) /* Receiver Enable */
|
||||
#define RCTL_SBP (1 << 2) /* Store Bad Packets */
|
||||
#define RCTL_UPE (1 << 3) /* Unicast Promiscuous Enabled */
|
||||
#define RCTL_MPE (1 << 4) /* Multicast Promiscuous Enabled */
|
||||
#define RCTL_LPE (1 << 5) /* Long Packet Reception Enable */
|
||||
#define RCTL_LBM_NONE (0 << 6) /* No Loopback */
|
||||
#define RCTL_LBM_PHY (3 << 6) /* PHY or external SerDesc loopback */
|
||||
#define RTCL_RDMTS_HALF (0 << 8) /* Free Buffer Threshold is 1/2 of RDLEN */
|
||||
#define RTCL_RDMTS_QUARTER (1 << 8) /* Free Buffer Threshold is 1/4 of RDLEN */
|
||||
#define RTCL_RDMTS_EIGHTH (2 << 8) /* Free Buffer Threshold is 1/8 of RDLEN */
|
||||
#define RCTL_MO_36 (0 << 12) /* Multicast Offset - bits 47:36 */
|
||||
#define RCTL_MO_35 (1 << 12) /* Multicast Offset - bits 46:35 */
|
||||
#define RCTL_MO_34 (2 << 12) /* Multicast Offset - bits 45:34 */
|
||||
#define RCTL_MO_32 (3 << 12) /* Multicast Offset - bits 43:32 */
|
||||
#define RCTL_BAM (1 << 15) /* Broadcast Accept Mode */
|
||||
#define RCTL_VFE (1 << 18) /* VLAN Filter Enable */
|
||||
#define RCTL_CFIEN (1 << 19) /* Canonical Form Indicator Enable */
|
||||
#define RCTL_CFI (1 << 20) /* Canonical Form Indicator Bit Value */
|
||||
#define RCTL_DPF (1 << 22) /* Discard Pause Frames */
|
||||
#define RCTL_PMCF (1 << 23) /* Pass MAC Control Frames */
|
||||
#define RCTL_SECRC (1 << 26) /* Strip Ethernet CRC */
|
||||
|
||||
#define RCTL_BSIZE_256 (3 << 16)
|
||||
#define RCTL_BSIZE_512 (2 << 16)
|
||||
#define RCTL_BSIZE_1024 (1 << 16)
|
||||
#define RCTL_BSIZE_2048 (0 << 16)
|
||||
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
|
||||
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
|
||||
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
|
||||
|
||||
#define TCTL_EN (1 << 1) /* Transmit Enable */
|
||||
#define TCTL_PSP (1 << 3) /* Pad Short Packets */
|
||||
#define TCTL_CT_SHIFT 4 /* Collision Threshold */
|
||||
#define TCTL_COLD_SHIFT 12 /* Collision Distance */
|
||||
#define TCTL_SWXOFF (1 << 22) /* Software XOFF Transmission */
|
||||
#define TCTL_RTLC (1 << 24) /* Re-transmit on Late Collision */
|
||||
|
||||
#define CMD_EOP (1 << 0) /* End of Packet */
|
||||
#define CMD_IFCS (1 << 1) /* Insert FCS */
|
||||
#define CMD_IC (1 << 2) /* Insert Checksum */
|
||||
#define CMD_RS (1 << 3) /* Report Status */
|
||||
#define CMD_RPS (1 << 4) /* Report Packet Sent */
|
||||
#define CMD_VLE (1 << 6) /* VLAN Packet Enable */
|
||||
#define CMD_IDE (1 << 7) /* Interrupt Delay Enable */
|
||||
|
||||
#define RX_STATUS_DD (1 << 0) /* Descriptor done */
|
||||
|
||||
#define STATUS_LINK_UP (1 << 1) /* Link Up */
|
||||
|
||||
static void write_command(uint16_t addr, uint32_t val) {
|
||||
(*((volatile uint32_t*)(mem_base + addr))) = val;
|
||||
}
|
||||
|
||||
static uint32_t read_command(uint16_t addr) {
|
||||
return *((volatile uint32_t*)(mem_base + addr));
|
||||
}
|
||||
|
||||
static int eeprom_detect(void) {
|
||||
|
||||
write_command(E1000_REG_EEPROM, 1);
|
||||
|
||||
for (int i = 0; i < 100000 && !has_eeprom; ++i) {
|
||||
uint32_t val = read_command(E1000_REG_EEPROM);
|
||||
if (val & 0x10) has_eeprom = 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static uint16_t eeprom_read(uint8_t addr) {
|
||||
uint32_t temp = 0;
|
||||
write_command(E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
|
||||
while (!((temp = read_command(E1000_REG_EEPROM)) & (1 << 4)));
|
||||
return (uint16_t)((temp >> 16) & 0xFFFF);
|
||||
}
|
||||
|
||||
|
||||
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
|
||||
if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea)) {
|
||||
*((uint32_t *)extra) = device;
|
||||
}
|
||||
}
|
||||
|
||||
static void write_mac(void) {
|
||||
|
||||
uint32_t low;
|
||||
uint32_t high;
|
||||
|
||||
memcpy(&low, &e1000_mac[0], 4);
|
||||
memcpy(&high,&e1000_mac[4], 2);
|
||||
memset((uint8_t *)&high + 2, 0, 2);
|
||||
high |= 0x80000000;
|
||||
|
||||
write_command(E1000_REG_RXADDR + 0, low);
|
||||
write_command(E1000_REG_RXADDR + 4, high);
|
||||
}
|
||||
|
||||
static void read_mac(void) {
|
||||
if (has_eeprom) {
|
||||
for (int i = 0; i < 3; i++) {
|
||||
uint32_t part = eeprom_read(i);
|
||||
e1000_mac[2*i] = part & 0xFF;
|
||||
e1000_mac[2*i + 1] = (part >> 8) & 0xFF;
|
||||
}
|
||||
} else {
|
||||
uint8_t* mac_addr = (uint8_t*)(mem_base + E1000_REG_RXADDR);
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
e1000_mac[i] = mac_addr[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Receives a packet, returning the size of the packet or 0 if no packet was received
|
||||
// User is responsible for freeing the buffer that we will allocate
|
||||
static size_t receive_packet(uint8_t** payload) {
|
||||
uint32_t rx_index = read_command(E1000_REG_RXDESCTAIL);
|
||||
if (rx_index == read_command(E1000_REG_RXDESCHEAD)) {
|
||||
// head == tail, so the queue is empty
|
||||
return 0;
|
||||
}
|
||||
|
||||
rx_index = (rx_index + 1) % E1000_NUM_RX_DESC;
|
||||
uint32_t packetstatus = rx[rx_index].status;
|
||||
if (!(packetstatus & (RX_STATUS_DD))) {
|
||||
// The network card isn't done receiving this packet
|
||||
return 0;
|
||||
}
|
||||
// Normally, we would have to check if this is the end of the packet, but
|
||||
// since we receive in chunks of 2048, an ethernet frame always fits in one chunk
|
||||
uint8_t* packet_address = (uint8_t*) rx_virt[rx_index];
|
||||
size_t size = (size_t) rx[rx_index].length;
|
||||
void* user_packet = alloc(size);
|
||||
memcpy(user_packet, packet_address, size);
|
||||
|
||||
// Set the status to done
|
||||
rx[rx_index].status = 0;
|
||||
|
||||
// Update the network card's tail
|
||||
write_command(E1000_REG_RXDESCTAIL, rx_index);
|
||||
*payload = user_packet;
|
||||
return size;
|
||||
}
|
||||
|
||||
static void send_packet(uint8_t* payload, size_t payload_size) {
|
||||
uint32_t tx_index = read_command(E1000_REG_TXDESCTAIL);
|
||||
|
||||
memcpy(tx_virt[tx_index], payload, payload_size);
|
||||
tx[tx_index].length = payload_size;
|
||||
// End Of Packet, let hardware generate checksum
|
||||
tx[tx_index].cmd = CMD_EOP | CMD_IFCS;
|
||||
tx[tx_index].status = 0;
|
||||
|
||||
tx_index = (tx_index + 1) % E1000_NUM_TX_DESC;
|
||||
write_command(E1000_REG_TXDESCTAIL, tx_index);
|
||||
}
|
||||
|
||||
static void init_rx(void) {
|
||||
// Set physical address of receive FIFO
|
||||
write_command(E1000_REG_RXDESCLO, rx_phys);
|
||||
write_command(E1000_REG_RXDESCHI, 0);
|
||||
|
||||
write_command(E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct rx_desc));
|
||||
|
||||
// Initialize head and tail of receive FIFO
|
||||
write_command(E1000_REG_RXDESCHEAD, 0);
|
||||
write_command(E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
|
||||
|
||||
// Enable receiving, receive packets of up to 2048, allow receiving broadcast packets
|
||||
write_command(E1000_REG_RCTRL,
|
||||
RCTL_EN | RCTL_BSIZE_2048 | RCTL_BAM |
|
||||
(read_command(E1000_REG_RCTRL)));
|
||||
|
||||
}
|
||||
|
||||
static void init_tx(void) {
|
||||
|
||||
// Set physical address of transmit FIFO
|
||||
write_command(E1000_REG_TXDESCLO, tx_phys);
|
||||
write_command(E1000_REG_TXDESCHI, 0);
|
||||
|
||||
write_command(E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct tx_desc));
|
||||
|
||||
// Initialize head and tail of transmit FIFO
|
||||
write_command(E1000_REG_TXDESCHEAD, 0);
|
||||
write_command(E1000_REG_TXDESCTAIL, 0);
|
||||
|
||||
// Enable transmitting, Pad Short Packets
|
||||
write_command(E1000_REG_TCTRL,
|
||||
TCTL_EN |
|
||||
TCTL_PSP |
|
||||
read_command(E1000_REG_TCTRL));
|
||||
}
|
||||
|
||||
static int e1000_init_main(void) {
|
||||
pci_scan(&find_e1000, -1, &e1000_device_pci);
|
||||
|
||||
if (!e1000_device_pci) {
|
||||
terminal_writestring("No e1000 device found.");
|
||||
return 1;
|
||||
}
|
||||
|
||||
mem_base = pci_read_field(e1000_device_pci, PCI_BAR0, 4) & 0xFFFFFFF0;
|
||||
|
||||
// TODO mark page as cache-disabled
|
||||
|
||||
// TODO shrink network buffer size to RCTL_BSIZE_2048
|
||||
// TODO align to paragraph instead of to page
|
||||
|
||||
// We don't do paging, so the virtual address = the physical address
|
||||
rx = valloc(sizeof(struct rx_desc) * E1000_NUM_RX_DESC + 16, 12);
|
||||
rx_phys = (uintptr_t) rx;
|
||||
for (int i = 0; i < E1000_NUM_RX_DESC; i++) {
|
||||
// Allocate a 2048-sized piece of memory, aligned (so the last 4 bits are 0)
|
||||
rx_virt[i] = valloc(2048, 4);
|
||||
rx[i].addr = (uintptr_t) rx_virt[i];
|
||||
rx[i].status = 0;
|
||||
}
|
||||
|
||||
tx = valloc(sizeof(struct tx_desc) * E1000_NUM_TX_DESC + 16, 12);
|
||||
tx_phys = (uintptr_t) tx;
|
||||
for (int i = 0; i < E1000_NUM_TX_DESC; i++) {
|
||||
tx_virt[i] = valloc(2048, 4);
|
||||
tx[i].addr = (uintptr_t) tx_virt[i];
|
||||
tx[i].status = 0;
|
||||
tx[i].cmd = (1 << 0);
|
||||
}
|
||||
|
||||
// Enable PCI bus mastering
|
||||
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
|
||||
command_reg |= (1 << 2);
|
||||
command_reg |= (1 << 0);
|
||||
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
|
||||
|
||||
eeprom_detect();
|
||||
|
||||
terminal_writestring("EEPROM=");
|
||||
terminal_writeint(has_eeprom, 10);
|
||||
|
||||
read_mac();
|
||||
terminal_writestring(" MAC = ");
|
||||
terminal_writeint(e1000_mac[0], 16);
|
||||
terminal_writeint(e1000_mac[1], 16);
|
||||
terminal_writeint(e1000_mac[2], 16);
|
||||
terminal_writeint(e1000_mac[3], 16);
|
||||
terminal_writeint(e1000_mac[4], 16);
|
||||
terminal_writeint(e1000_mac[5], 16);
|
||||
terminal_writestring("\n");
|
||||
write_mac();
|
||||
|
||||
init_rx();
|
||||
init_tx();
|
||||
|
||||
int networkstatus = read_command(E1000_REG_STATUS);
|
||||
|
||||
terminal_writestring("Network is ");
|
||||
if (networkstatus) {
|
||||
terminal_writestring("up!\n");
|
||||
} else {
|
||||
terminal_writestring("down :/ \n");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif // DRIVERS_NETWORKING_E1000_C
|
47
kernel/drivers/networking/network.c
Normal file
47
kernel/drivers/networking/network.c
Normal file
|
@ -0,0 +1,47 @@
|
|||
#ifndef DRIVERS_NETWORKING_NETWORK_C
|
||||
#define DRIVERS_NETWORKING_NETWORK_C
|
||||
|
||||
#include "e1000.c"
|
||||
#include "../../memory.c"
|
||||
|
||||
uint8_t* create_packet(uint8_t dest[6], uint8_t src[6], uint8_t type[2], uint8_t* content, int contentlength) {
|
||||
uint8_t* returnbuffer = alloc(6 + 6 + 2 + contentlength);
|
||||
memcpy(returnbuffer, dest, 6);
|
||||
memcpy(returnbuffer + 6, src, 6);
|
||||
memcpy(returnbuffer + 6 + 6, type, 2);
|
||||
memcpy(returnbuffer + 6 + 6 + 2, content, contentlength);
|
||||
return returnbuffer;
|
||||
}
|
||||
|
||||
void network_init() {
|
||||
|
||||
uint8_t dest[6] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
|
||||
uint8_t src[6] = {0x1a, 0x2b, 0x3c, 0x4d, 0x5e, 0x6f};
|
||||
uint8_t type[2] = {0x69, 0x69};
|
||||
|
||||
e1000_init_main();
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
uint8_t* packet = create_packet(dest, src, type, (uint8_t*) "Zulu Echo Uniform Sierra Whiskey Papa India", 43);
|
||||
|
||||
send_packet(packet, 6 + 6 + 2 + 43);
|
||||
// TODO free(packet)
|
||||
}
|
||||
|
||||
uint8_t* received_packet;
|
||||
while (1) {
|
||||
size_t s = receive_packet(&received_packet);
|
||||
if (s) {
|
||||
terminal_writeint(s, 10);
|
||||
terminal_writestring(" received packet \n");
|
||||
for (size_t i = 0; i < s; i++) {
|
||||
terminal_putchar(received_packet[i]);
|
||||
}
|
||||
// TODO free(*received_packet)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // DRIVERS_NETWORKING_NETWORK_C
|
196
kernel/drivers/pci/pci.c
Normal file
196
kernel/drivers/pci/pci.c
Normal file
|
@ -0,0 +1,196 @@
|
|||
#ifndef DRIVERS_PCI_PCI_C
|
||||
#define DRIVERS_PCI_PCI_C
|
||||
|
||||
typedef void (*pci_func_t)(uint32_t device, uint16_t vendor_id, uint16_t device_id, void * extra);
|
||||
void pci_scan_bus(pci_func_t f, int type, int bus, void * extra);
|
||||
|
||||
#define PCI_VENDOR_ID 0x00 // 2
|
||||
#define PCI_DEVICE_ID 0x02 // 2
|
||||
#define PCI_COMMAND 0x04 // 2
|
||||
#define PCI_STATUS 0x06 // 2
|
||||
#define PCI_REVISION_ID 0x08 // 1
|
||||
|
||||
#define PCI_PROG_IF 0x09 // 1
|
||||
#define PCI_SUBCLASS 0x0a // 1
|
||||
#define PCI_CLASS 0x0b // 1
|
||||
#define PCI_CACHE_LINE_SIZE 0x0c // 1
|
||||
#define PCI_LATENCY_TIMER 0x0d // 1
|
||||
#define PCI_HEADER_TYPE 0x0e // 1
|
||||
#define PCI_BIST 0x0f // 1
|
||||
#define PCI_BAR0 0x10 // 4
|
||||
#define PCI_BAR1 0x14 // 4
|
||||
#define PCI_BAR2 0x18 // 4
|
||||
#define PCI_BAR3 0x1C // 4
|
||||
#define PCI_BAR4 0x20 // 4
|
||||
#define PCI_BAR5 0x24 // 4
|
||||
|
||||
#define PCI_INTERRUPT_LINE 0x3C // 1
|
||||
|
||||
#define PCI_SECONDARY_BUS 0x19 // 1
|
||||
|
||||
#define PCI_HEADER_TYPE_DEVICE 0
|
||||
#define PCI_HEADER_TYPE_BRIDGE 1
|
||||
#define PCI_HEADER_TYPE_CARDBUS 2
|
||||
|
||||
#define PCI_TYPE_BRIDGE 0x0604
|
||||
#define PCI_TYPE_SATA 0x0106
|
||||
|
||||
#define PCI_ADDRESS_PORT 0xCF8
|
||||
#define PCI_VALUE_PORT 0xCFC
|
||||
|
||||
#define PCI_NONE 0xFFFF
|
||||
|
||||
typedef void (*pci_func_t)(uint32_t device, uint16_t vendor_id, uint16_t device_id, void * extra);
|
||||
|
||||
static inline int pci_extract_bus(uint32_t device) {
|
||||
return (uint8_t)((device >> 16));
|
||||
}
|
||||
static inline int pci_extract_slot(uint32_t device) {
|
||||
return (uint8_t)((device >> 8));
|
||||
}
|
||||
static inline int pci_extract_func(uint32_t device) {
|
||||
return (uint8_t)(device);
|
||||
}
|
||||
|
||||
static inline uint32_t pci_get_addr(uint32_t device, int field) {
|
||||
return 0x80000000 | (pci_extract_bus(device) << 16) | (pci_extract_slot(device) << 11) | (pci_extract_func(device) << 8) | ((field) & 0xFC);
|
||||
}
|
||||
|
||||
static inline uint32_t pci_box_device(int bus, int slot, int func) {
|
||||
return (uint32_t)((bus << 16) | (slot << 8) | func);
|
||||
}
|
||||
|
||||
|
||||
void pci_write_field(uint32_t device, int field, int size, uint32_t value) {
|
||||
outl(PCI_ADDRESS_PORT, pci_get_addr(device, field));
|
||||
outl(PCI_VALUE_PORT, value);
|
||||
}
|
||||
|
||||
uint32_t pci_read_field(uint32_t device, int field, int size) {
|
||||
outl(PCI_ADDRESS_PORT, pci_get_addr(device, field));
|
||||
|
||||
if (size == 4) {
|
||||
uint32_t t = inl(PCI_VALUE_PORT);
|
||||
return t;
|
||||
} else if (size == 2) {
|
||||
uint16_t t = inw(PCI_VALUE_PORT + (field & 2));
|
||||
return t;
|
||||
} else if (size == 1) {
|
||||
uint8_t t = inb(PCI_VALUE_PORT + (field & 3));
|
||||
return t;
|
||||
}
|
||||
return 0xFFFF;
|
||||
}
|
||||
|
||||
uint16_t pci_find_type(uint32_t dev) {
|
||||
return (pci_read_field(dev, PCI_CLASS, 1) << 8) | pci_read_field(dev, PCI_SUBCLASS, 1);
|
||||
}
|
||||
|
||||
|
||||
void pci_scan_hit(pci_func_t f, uint32_t dev, void * extra) {
|
||||
int dev_vend = (int)pci_read_field(dev, PCI_VENDOR_ID, 2);
|
||||
int dev_dvid = (int)pci_read_field(dev, PCI_DEVICE_ID, 2);
|
||||
|
||||
f(dev, dev_vend, dev_dvid, extra);
|
||||
}
|
||||
|
||||
void pci_scan_func(pci_func_t f, int type, int bus, int slot, int func, void * extra) {
|
||||
uint32_t dev = pci_box_device(bus, slot, func);
|
||||
if (type == -1 || type == pci_find_type(dev)) {
|
||||
pci_scan_hit(f, dev, extra);
|
||||
}
|
||||
if (pci_find_type(dev) == PCI_TYPE_BRIDGE) {
|
||||
pci_scan_bus(f, type, pci_read_field(dev, PCI_SECONDARY_BUS, 1), extra);
|
||||
}
|
||||
}
|
||||
|
||||
void pci_scan_slot(pci_func_t f, int type, int bus, int slot, void * extra) {
|
||||
uint32_t dev = pci_box_device(bus, slot, 0);
|
||||
if (pci_read_field(dev, PCI_VENDOR_ID, 2) == PCI_NONE) {
|
||||
return;
|
||||
}
|
||||
pci_scan_func(f, type, bus, slot, 0, extra);
|
||||
if (!pci_read_field(dev, PCI_HEADER_TYPE, 1)) {
|
||||
return;
|
||||
}
|
||||
for (int func = 1; func < 8; func++) {
|
||||
uint32_t dev = pci_box_device(bus, slot, func);
|
||||
if (pci_read_field(dev, PCI_VENDOR_ID, 2) != PCI_NONE) {
|
||||
pci_scan_func(f, type, bus, slot, func, extra);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pci_scan_bus(pci_func_t f, int type, int bus, void * extra) {
|
||||
for (int slot = 0; slot < 32; ++slot) {
|
||||
pci_scan_slot(f, type, bus, slot, extra);
|
||||
}
|
||||
}
|
||||
|
||||
void pci_scan(pci_func_t f, int type, void * extra) {
|
||||
|
||||
if ((pci_read_field(0, PCI_HEADER_TYPE, 1) & 0x80) == 0) {
|
||||
pci_scan_bus(f,type,0,extra);
|
||||
return;
|
||||
}
|
||||
|
||||
for (int func = 0; func < 8; ++func) {
|
||||
uint32_t dev = pci_box_device(0, 0, func);
|
||||
if (pci_read_field(dev, PCI_VENDOR_ID, 2) != PCI_NONE) {
|
||||
pci_scan_bus(f, type, func, extra);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void find_isa_bridge(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
|
||||
if (vendorid == 0x8086 && (deviceid == 0x7000 || deviceid == 0x7110)) {
|
||||
*((uint32_t *)extra) = device;
|
||||
}
|
||||
}
|
||||
static uint32_t pci_isa = 0;
|
||||
static uint8_t pci_remaps[4] = {0};
|
||||
void pci_remap(void) {
|
||||
pci_scan(&find_isa_bridge, -1, &pci_isa);
|
||||
if (pci_isa) {
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
pci_remaps[i] = pci_read_field(pci_isa, 0x60+i, 1);
|
||||
if (pci_remaps[i] == 0x80) {
|
||||
pci_remaps[i] = 10 + (i%1);
|
||||
}
|
||||
}
|
||||
uint32_t out = 0;
|
||||
memcpy(&out, &pci_remaps, 4);
|
||||
pci_write_field(pci_isa, 0x60, 4, out);
|
||||
}
|
||||
}
|
||||
|
||||
int pci_get_interrupt(uint32_t device) {
|
||||
|
||||
if (pci_isa) {
|
||||
uint32_t irq_pin = pci_read_field(device, 0x3D, 1);
|
||||
if (irq_pin == 0) {
|
||||
return pci_read_field(device, PCI_INTERRUPT_LINE, 1);
|
||||
}
|
||||
int pirq = (irq_pin + pci_extract_slot(device) - 2) % 4;
|
||||
int int_line = pci_read_field(device, PCI_INTERRUPT_LINE, 1);
|
||||
if (pci_remaps[pirq] >= 0x80) {
|
||||
if (int_line == 0xFF) {
|
||||
int_line = 10;
|
||||
pci_write_field(device, PCI_INTERRUPT_LINE, 1, int_line);
|
||||
}
|
||||
pci_remaps[pirq] = int_line;
|
||||
uint32_t out = 0;
|
||||
memcpy(&out, &pci_remaps, 4);
|
||||
pci_write_field(pci_isa, 0x60, 4, out);
|
||||
return int_line;
|
||||
}
|
||||
pci_write_field(device, PCI_INTERRUPT_LINE, 1, pci_remaps[pirq]);
|
||||
return pci_remaps[pirq];
|
||||
} else {
|
||||
return pci_read_field(device, PCI_INTERRUPT_LINE, 1);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // DRIVERS_PCI_PCI_C
|
|
@ -31,13 +31,33 @@ static inline uint8_t inb(uint16_t port) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
static uint16_t inw(uint16_t port) {
|
||||
uint16_t ret;
|
||||
asm volatile ("inw %1, %0" : "=a" (ret) : "dN" (port));
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void outw(uint16_t port, uint16_t val) {
|
||||
asm volatile ("outw %0, %1" : : "a" (val), "dN" (port) );
|
||||
}
|
||||
|
||||
static uint32_t inl(uint16_t port) {
|
||||
uint32_t ret;
|
||||
asm volatile ("inl %%dx, %%eax" : "=a" (ret) : "dN" (port));
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void outl(uint16_t port, uint32_t val) {
|
||||
asm volatile ("outl %%eax, %%dx" : : "dN" (port), "a" (val));
|
||||
}
|
||||
|
||||
static inline void lidt(void* base, uint16_t size)
|
||||
{ // This function works in 32 and 64bit mode
|
||||
struct {
|
||||
uint16_t length;
|
||||
void* base;
|
||||
} __attribute__((packed)) IDTR = { size, base };
|
||||
|
||||
|
||||
asm ( "lidt %0" : : "m"(IDTR) ); // let the compiler choose an addressing mode
|
||||
}
|
||||
|
||||
|
@ -61,4 +81,20 @@ static inline void sgdt(gdt_desc* ret) {
|
|||
asm volatile ("sgdt %0" : : "m"(*ret) : "memory");
|
||||
}
|
||||
|
||||
#endif //INLINE ASM_C
|
||||
static void * memcpy(void * restrict dest, const void * restrict src, long n) {
|
||||
asm volatile("cld; rep movsb"
|
||||
: "=c"((int){0})
|
||||
: "D"(dest), "S"(src), "c"(n)
|
||||
: "flags", "memory");
|
||||
return dest;
|
||||
}
|
||||
|
||||
static void * memset(void * dest, int c, long n) {
|
||||
asm volatile("cld; rep stosb"
|
||||
: "=c"((int){0})
|
||||
: "D"(dest), "a"(c), "c"(n)
|
||||
: "flags", "memory");
|
||||
return dest;
|
||||
}
|
||||
|
||||
#endif //INLINE ASM_C
|
||||
|
|
|
@ -32,12 +32,12 @@ void interrupt_new_handler(int intnum, void (*handler)(interrupt_frame*)) {
|
|||
|
||||
void interrupt_init() {
|
||||
/* ICW1 - begin initialization */
|
||||
outb(0x20, 0x11);
|
||||
outb(0x20, 0x11);
|
||||
outb(0xA0, 0x11);
|
||||
|
||||
/* ICW2 - remap offset address of IDT */
|
||||
outb(0x21, 0x20);
|
||||
outb(0xA1, 0x82);
|
||||
outb(0xA1, 0x28);
|
||||
|
||||
/* ICW3 - setup cascading */
|
||||
outb(0x21, 0x00);
|
||||
|
@ -47,9 +47,9 @@ void interrupt_init() {
|
|||
outb(0x21, 0x01);
|
||||
outb(0xA1, 0x01);
|
||||
|
||||
/* mask interrupts */
|
||||
outb(0x21 , 0xff);
|
||||
outb(0xA1 , 0xff);
|
||||
/* mask interrupts */
|
||||
outb(0x21 , 0xff);
|
||||
outb(0xA1 , 0xff);
|
||||
|
||||
// Exceptions
|
||||
interrupt_new_handler(DIVIDE_BY_ZERO, divide_by_zero_handler);
|
||||
|
@ -89,9 +89,10 @@ void interrupt_init() {
|
|||
|
||||
uint16_t size = (sizeof(idt_entry) * 256);
|
||||
|
||||
lidt(IDT, size);
|
||||
lidt(IDT, size);
|
||||
|
||||
keyboard_init();
|
||||
|
||||
}
|
||||
|
||||
#endif //INTERRUPTS_C
|
||||
#endif //INTERRUPTS_C
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
#if defined(__linux__)
|
||||
#error "You are not using a cross-compiler, you will most certainly run into trouble"
|
||||
#endif
|
||||
|
||||
|
||||
/* This tutorial will only work for the 32-bit ix86 targets. */
|
||||
#if !defined(__i386__)
|
||||
#error "This kernel needs to be compiled with a ix86-elf compiler"
|
||||
|
@ -16,6 +16,7 @@
|
|||
#include "memory.c"
|
||||
#include "interrupts.c"
|
||||
#include "shell.c"
|
||||
#include "network.c"
|
||||
|
||||
static inline bool are_interrupts_enabled() {
|
||||
unsigned long flags;
|
||||
|
@ -25,7 +26,7 @@ static inline bool are_interrupts_enabled() {
|
|||
return flags & (1 << 9);
|
||||
}
|
||||
|
||||
void kernel_main(void)
|
||||
void kernel_main(void)
|
||||
{
|
||||
/* Initialize terminal interface */
|
||||
terminal_initialize();
|
||||
|
@ -35,11 +36,11 @@ void kernel_main(void)
|
|||
terminal_putchar('l');
|
||||
terminal_putchar('l');
|
||||
terminal_putchar('o');
|
||||
|
||||
terminal_setcolor(vga_entry_color(VGA_COLOR_GREEN, VGA_COLOR_BLACK));
|
||||
terminal_writestring(" kernel");
|
||||
terminal_setcolor(vga_entry_color(VGA_COLOR_LIGHT_GREY, VGA_COLOR_BLACK));
|
||||
terminal_writestring(" World!\n");
|
||||
|
||||
terminal_setcolor(vga_entry_color(VGA_COLOR_GREEN, VGA_COLOR_BLACK));
|
||||
terminal_writestring(" kernel");
|
||||
terminal_setcolor(vga_entry_color(VGA_COLOR_LIGHT_GREY, VGA_COLOR_BLACK));
|
||||
terminal_writestring(" World!\n");
|
||||
terminal_writestring("Newlines!\n");
|
||||
|
||||
char* memory_str = alloc(sizeof(char) * 7);
|
||||
|
@ -60,8 +61,9 @@ void kernel_main(void)
|
|||
terminal_writestring((are_interrupts_enabled())? "Interrupts!\n": "No interrupts :(\n");
|
||||
|
||||
interrupt_init();
|
||||
network_init();
|
||||
|
||||
for(;;) {
|
||||
shell_step();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
1
kernel/network.c
Normal file
1
kernel/network.c
Normal file
|
@ -0,0 +1 @@
|
|||
#include "drivers/networking/network.c"
|
111
kernel/util/ringbuffer.c
Normal file
111
kernel/util/ringbuffer.c
Normal file
|
@ -0,0 +1,111 @@
|
|||
#ifndef RINGBUFFER_C
|
||||
#define RINGBUFFER_C
|
||||
|
||||
#include "ringbuffer.h"
|
||||
#include "../memory.c"
|
||||
|
||||
#define ERROR(msg) \
|
||||
do { \
|
||||
/* TODO Do something error-ish */ \
|
||||
} while(0)
|
||||
|
||||
#define ASSERT_NONNULL_ARG(argument) { \
|
||||
if (argument == NULL) { \
|
||||
ERROR(__func__ " got NULL for argument '" #argument "'"); \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
struct ringbuffer* rbfr_create(const int capacity, void (*const destroy_element)(void*)) {
|
||||
ASSERT_NONNULL_ARG(destroy_element);
|
||||
|
||||
struct ringbuffer* const this = alloc(sizeof (struct ringbuffer));
|
||||
|
||||
this->buffer = alloc(capacity * sizeof (void*));
|
||||
this->buffer_n = capacity;
|
||||
this->size = 0;
|
||||
this->head = 0;
|
||||
|
||||
this->destroy_element = destroy_element;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
void rbfr_destroy(struct ringbuffer* const this) {
|
||||
ASSERT_NONNULL_ARG(this);
|
||||
|
||||
rbfr_clear(this);
|
||||
|
||||
free(this->buffer);
|
||||
this->buffer = NULL;
|
||||
|
||||
free(this);
|
||||
}
|
||||
|
||||
int rbfr_size(const struct ringbuffer* const this) {
|
||||
ASSERT_NONNULL_ARG(this);
|
||||
|
||||
return this->size;
|
||||
}
|
||||
|
||||
int rbfr_capacity(const struct ringbuffer* this) {
|
||||
ASSERT_NONNULL_ARG(this);
|
||||
return this->buffer_n;
|
||||
}
|
||||
|
||||
void rbfr_enqueue(struct ringbuffer* this, void* const element) {
|
||||
ASSERT_NONNULL_ARG(this);
|
||||
|
||||
if (this->buffer_n == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
int index = this->head + this->size;
|
||||
if (index >= this->buffer_n) {
|
||||
index -= this->buffer_n;
|
||||
}
|
||||
this->buffer[index] = element;
|
||||
if (this->size < this->buffer_n) {
|
||||
this->size++;
|
||||
} else {
|
||||
this->head++;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
bool rbfr_peek(const struct ringbuffer *const this, void** element) {
|
||||
ASSERT_NONNULL_ARG(this);
|
||||
ASSERT_NONNULL_ARG(element);
|
||||
|
||||
if (this->size == 0) {
|
||||
return false;
|
||||
}
|
||||
*element = this->buffer[this->head];
|
||||
return true;
|
||||
}
|
||||
|
||||
bool rbfr_dequeue(struct ringbuffer *const this, void** element) {
|
||||
ASSERT_NONNULL_ARG(this);
|
||||
ASSERT_NONNULL_ARG(element);
|
||||
|
||||
if (!rbfr_peek(this, element)) {
|
||||
return false;
|
||||
}
|
||||
this->size--;
|
||||
this->head++;
|
||||
if (this->head >= this->buffer_n) {
|
||||
this->head = 0;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void rbfr_clear(struct ringbuffer* this) {
|
||||
ASSERT_NONNULL_ARG(this);
|
||||
|
||||
void* element;
|
||||
while (rbfr_dequeue(this, &element)) {
|
||||
this->destroy_element(element);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // RINGBUFFER_C
|
80
kernel/util/ringbuffer.h
Normal file
80
kernel/util/ringbuffer.h
Normal file
|
@ -0,0 +1,80 @@
|
|||
#ifndef RINGBUFFER_H
|
||||
#define RINGBUFFER_H
|
||||
|
||||
#include <stdbool.h>
|
||||
|
||||
// Data layout: ↓head
|
||||
// buffer = [ 4, undef, undef, 1, 2, 3 ]
|
||||
// where 1 is the oldest element and 4 the newest.
|
||||
// Enqueue adds the element after 4 and dequeue removes 1.
|
||||
struct ringbuffer {
|
||||
int head;
|
||||
int size;
|
||||
void (*destroy_element)(void*);
|
||||
int buffer_n;
|
||||
void** buffer;
|
||||
};
|
||||
|
||||
/**
|
||||
* Allocate memory and initialize a circular queue with given capacity
|
||||
*
|
||||
* A ringbuffer, or circular queue, is like a regular queue, but if it's full when you add an
|
||||
* element, it displaces the oldest element to make place. As such, adding elements never fails.
|
||||
*
|
||||
* Memory: this function allocates memory for the queue (free it with rbfr_destroy). The
|
||||
* destroy_element function user has to provide must free an element's memory.
|
||||
*
|
||||
* @param capacity maximum amount of elements to accept without dropping oldest
|
||||
* @param destroy_element function called when the queue has to drop an element, with the element
|
||||
* passed as argument
|
||||
* @return pointer to ringbuffer
|
||||
*/
|
||||
struct ringbuffer* rbfr_create(const int capacity, void (*destroy_element)(void*));
|
||||
|
||||
/**
|
||||
* Free the queue's memory
|
||||
*
|
||||
* Memory: all elements still present are freed using the destroy_element function provided by user
|
||||
* in rbfr_create.
|
||||
*/
|
||||
void rbfr_destroy(struct ringbuffer* this);
|
||||
|
||||
int rbfr_size(const struct ringbuffer* this);
|
||||
|
||||
int rbfr_capacity(const struct ringbuffer* this);
|
||||
|
||||
/**
|
||||
* Add one element at the end
|
||||
*
|
||||
* If the queue is full (if size==capacity), the oldest element is removed to make place. As such,
|
||||
* this operation does not fail if the queue is full.
|
||||
*
|
||||
* Memory: if an element has to be removed to make place, it is freed using the destroy_element
|
||||
* function provided by user in rbfr_create.
|
||||
*/
|
||||
void rbfr_enqueue(struct ringbuffer* this, void* element);
|
||||
|
||||
/**
|
||||
* Return first element without removing it from the buffer
|
||||
*
|
||||
* Memory: do not free the element's memory, it still lives in the ringbuffer.
|
||||
*/
|
||||
bool rbfr_peek(const struct ringbuffer* this, void** element);
|
||||
|
||||
/**
|
||||
* Remove first element and return it
|
||||
*
|
||||
* Memory: user is responsible for freeing the element's memory.
|
||||
*/
|
||||
bool rbfr_dequeue(struct ringbuffer* this, void** element);
|
||||
|
||||
/**
|
||||
* Remove all elements
|
||||
*
|
||||
* Memory: this function destroys elements using the destroy_element function provided by user in
|
||||
* rbfr_create.
|
||||
*/
|
||||
void rbfr_clear(struct ringbuffer* this);
|
||||
|
||||
|
||||
#endif // RINGBUFFER_H
|
Loading…
Reference in a new issue