Compare commits

...

5 commits

Author SHA1 Message Date
3fb475dc70
Ringbuffer: add null checks and more const 2020-02-01 23:34:48 +01:00
269a45839c
Ringbuffer: introduce destroy_element 2020-02-01 22:47:51 +01:00
redfast00
bda7eda76a
Add E1000 network driver 2020-01-31 06:26:23 +01:00
redfast00
bfc7754fab
Fix offset typo, reformat 2020-01-31 06:25:23 +01:00
69c9b2c9ca
Add ringbuffer data structure 2020-01-31 06:25:23 +01:00
13 changed files with 837 additions and 19 deletions

View file

@ -1,8 +1,8 @@
run: bin
qemu-system-i386 -drive format=raw,file=target/boot.bin -monitor stdio
qemu-system-i386 -vga std -nodefaults -drive format=raw,file=target/boot.bin -monitor stdio -device e1000,netdev=u1,mac=aa:bb:cc:dd:ee:ff -object filter-dump,id=f1,netdev=u1,file=/tmp/dump.pcap -netdev tap,id=u1,ifname=tap0,script=no,downscript=no
run_kernelonly: compile_kernel
qemu-system-i386 -kernel target/kernel/kernel.bin -monitor stdio
qemu-system-i386 -kernel target/kernel/kernel.bin -monitor stdio -vga std -nodefaults -device e1000,netdev=u1,mac=aa:bb:cc:dd:ee:ff -object filter-dump,id=f1,netdev=u1,file=/tmp/dump.dat -netdev tap,id=u1,ifname=tap0,script=no,downscript=no
debug_kernel: compile_kernel
qemu-system-i386 -s -S -kernel target/kernel/kernel.bin

View file

@ -18,6 +18,8 @@ If you run `make bin`, it will generate `target/boot.bin`, this is a binary file
In case there are errors in the bootloader you can use `make compile_kernel` to only compile the kernel.
To run TABS in the qemu simulator run `make run`.
To test the operating system in QEMU, first set up a tap interface with the `create_tap.sh` script,
then run `make run` or `make run_kernelonly`.
## Bootloader
@ -45,5 +47,8 @@ The kernel is based on [the bare bones kernel from the OSDev wiki](https://wiki.
- [ ] Running executables from filesystem
- [ ] Better memory management
- [ ] Better shell
- [X] A driver for E1000-type network cards
- [X] sending packets
- [X] receiving packets
As a test, I've implemented day 1 of [advent of code](https://adventofcode.com/) on the [AoC branch](https://github.com/Robbe7730/RoBoot/tree/AoC).

5
create_tap.sh Executable file
View file

@ -0,0 +1,5 @@
#!/usr/bin/env bash
sudo ip tuntap add dev tap0 mode tap
sudo ip link set up dev tap0
sudo chown $USER tap0

BIN
docs/8254x_GBe_SDM.pdf Normal file

Binary file not shown.

View file

@ -0,0 +1,334 @@
#ifndef DRIVERS_NETWORKING_E1000_C
#define DRIVERS_NETWORKING_E1000_C
#include "../../inline_asm.c"
#include "../pci/pci.c"
#define E1000_NUM_RX_DESC 32
#define E1000_NUM_TX_DESC 8
static uint32_t e1000_device_pci = 0x00000000;
static uintptr_t mem_base = 0;
static int has_eeprom = 0;
static uint8_t e1000_mac[6];
// Aligned alloc
void* valloc(unsigned int size, int i) {
uint32_t addr = (uint32_t) alloc(size + (1 << i));
addr = (((addr - 1) >> i) + 1 ) << i;
return (void*) addr;
}
struct rx_desc {
volatile uint64_t addr;
volatile uint16_t length;
volatile uint16_t checksum;
volatile uint8_t status;
volatile uint8_t errors;
volatile uint16_t special;
} __attribute__((packed));
struct tx_desc {
volatile uint64_t addr;
volatile uint16_t length;
volatile uint8_t cso;
volatile uint8_t cmd;
volatile uint8_t status;
volatile uint8_t css;
volatile uint16_t special;
} __attribute__((packed));
static uint8_t * rx_virt[E1000_NUM_RX_DESC];
static uint8_t * tx_virt[E1000_NUM_TX_DESC];
static struct rx_desc * rx;
static struct tx_desc * tx;
static uintptr_t rx_phys;
static uintptr_t tx_phys;
#define E1000_REG_CTRL 0x0000
#define E1000_REG_STATUS 0x0008
#define E1000_REG_EEPROM 0x0014
#define E1000_REG_CTRL_EXT 0x0018
#define E1000_REG_RCTRL 0x0100
#define E1000_REG_RXDESCLO 0x2800
#define E1000_REG_RXDESCHI 0x2804
#define E1000_REG_RXDESCLEN 0x2808
#define E1000_REG_RXDESCHEAD 0x2810
#define E1000_REG_RXDESCTAIL 0x2818
#define E1000_REG_TCTRL 0x0400
#define E1000_REG_TXDESCLO 0x3800
#define E1000_REG_TXDESCHI 0x3804
#define E1000_REG_TXDESCLEN 0x3808
#define E1000_REG_TXDESCHEAD 0x3810
#define E1000_REG_TXDESCTAIL 0x3818
#define E1000_REG_RXADDR 0x5400
#define RCTL_EN (1 << 1) /* Receiver Enable */
#define RCTL_SBP (1 << 2) /* Store Bad Packets */
#define RCTL_UPE (1 << 3) /* Unicast Promiscuous Enabled */
#define RCTL_MPE (1 << 4) /* Multicast Promiscuous Enabled */
#define RCTL_LPE (1 << 5) /* Long Packet Reception Enable */
#define RCTL_LBM_NONE (0 << 6) /* No Loopback */
#define RCTL_LBM_PHY (3 << 6) /* PHY or external SerDesc loopback */
#define RTCL_RDMTS_HALF (0 << 8) /* Free Buffer Threshold is 1/2 of RDLEN */
#define RTCL_RDMTS_QUARTER (1 << 8) /* Free Buffer Threshold is 1/4 of RDLEN */
#define RTCL_RDMTS_EIGHTH (2 << 8) /* Free Buffer Threshold is 1/8 of RDLEN */
#define RCTL_MO_36 (0 << 12) /* Multicast Offset - bits 47:36 */
#define RCTL_MO_35 (1 << 12) /* Multicast Offset - bits 46:35 */
#define RCTL_MO_34 (2 << 12) /* Multicast Offset - bits 45:34 */
#define RCTL_MO_32 (3 << 12) /* Multicast Offset - bits 43:32 */
#define RCTL_BAM (1 << 15) /* Broadcast Accept Mode */
#define RCTL_VFE (1 << 18) /* VLAN Filter Enable */
#define RCTL_CFIEN (1 << 19) /* Canonical Form Indicator Enable */
#define RCTL_CFI (1 << 20) /* Canonical Form Indicator Bit Value */
#define RCTL_DPF (1 << 22) /* Discard Pause Frames */
#define RCTL_PMCF (1 << 23) /* Pass MAC Control Frames */
#define RCTL_SECRC (1 << 26) /* Strip Ethernet CRC */
#define RCTL_BSIZE_256 (3 << 16)
#define RCTL_BSIZE_512 (2 << 16)
#define RCTL_BSIZE_1024 (1 << 16)
#define RCTL_BSIZE_2048 (0 << 16)
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
#define TCTL_EN (1 << 1) /* Transmit Enable */
#define TCTL_PSP (1 << 3) /* Pad Short Packets */
#define TCTL_CT_SHIFT 4 /* Collision Threshold */
#define TCTL_COLD_SHIFT 12 /* Collision Distance */
#define TCTL_SWXOFF (1 << 22) /* Software XOFF Transmission */
#define TCTL_RTLC (1 << 24) /* Re-transmit on Late Collision */
#define CMD_EOP (1 << 0) /* End of Packet */
#define CMD_IFCS (1 << 1) /* Insert FCS */
#define CMD_IC (1 << 2) /* Insert Checksum */
#define CMD_RS (1 << 3) /* Report Status */
#define CMD_RPS (1 << 4) /* Report Packet Sent */
#define CMD_VLE (1 << 6) /* VLAN Packet Enable */
#define CMD_IDE (1 << 7) /* Interrupt Delay Enable */
#define RX_STATUS_DD (1 << 0) /* Descriptor done */
#define STATUS_LINK_UP (1 << 1) /* Link Up */
static void write_command(uint16_t addr, uint32_t val) {
(*((volatile uint32_t*)(mem_base + addr))) = val;
}
static uint32_t read_command(uint16_t addr) {
return *((volatile uint32_t*)(mem_base + addr));
}
static int eeprom_detect(void) {
write_command(E1000_REG_EEPROM, 1);
for (int i = 0; i < 100000 && !has_eeprom; ++i) {
uint32_t val = read_command(E1000_REG_EEPROM);
if (val & 0x10) has_eeprom = 1;
}
return 0;
}
static uint16_t eeprom_read(uint8_t addr) {
uint32_t temp = 0;
write_command(E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
while (!((temp = read_command(E1000_REG_EEPROM)) & (1 << 4)));
return (uint16_t)((temp >> 16) & 0xFFFF);
}
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea)) {
*((uint32_t *)extra) = device;
}
}
static void write_mac(void) {
uint32_t low;
uint32_t high;
memcpy(&low, &e1000_mac[0], 4);
memcpy(&high,&e1000_mac[4], 2);
memset((uint8_t *)&high + 2, 0, 2);
high |= 0x80000000;
write_command(E1000_REG_RXADDR + 0, low);
write_command(E1000_REG_RXADDR + 4, high);
}
static void read_mac(void) {
if (has_eeprom) {
for (int i = 0; i < 3; i++) {
uint32_t part = eeprom_read(i);
e1000_mac[2*i] = part & 0xFF;
e1000_mac[2*i + 1] = (part >> 8) & 0xFF;
}
} else {
uint8_t* mac_addr = (uint8_t*)(mem_base + E1000_REG_RXADDR);
for (int i = 0; i < 6; ++i) {
e1000_mac[i] = mac_addr[i];
}
}
}
// Receives a packet, returning the size of the packet or 0 if no packet was received
// User is responsible for freeing the buffer that we will allocate
static size_t receive_packet(uint8_t** payload) {
uint32_t rx_index = read_command(E1000_REG_RXDESCTAIL);
if (rx_index == read_command(E1000_REG_RXDESCHEAD)) {
// head == tail, so the queue is empty
return 0;
}
rx_index = (rx_index + 1) % E1000_NUM_RX_DESC;
uint32_t packetstatus = rx[rx_index].status;
if (!(packetstatus & (RX_STATUS_DD))) {
// The network card isn't done receiving this packet
return 0;
}
// Normally, we would have to check if this is the end of the packet, but
// since we receive in chunks of 2048, an ethernet frame always fits in one chunk
uint8_t* packet_address = (uint8_t*) rx_virt[rx_index];
size_t size = (size_t) rx[rx_index].length;
void* user_packet = alloc(size);
memcpy(user_packet, packet_address, size);
// Set the status to done
rx[rx_index].status = 0;
// Update the network card's tail
write_command(E1000_REG_RXDESCTAIL, rx_index);
*payload = user_packet;
return size;
}
static void send_packet(uint8_t* payload, size_t payload_size) {
uint32_t tx_index = read_command(E1000_REG_TXDESCTAIL);
memcpy(tx_virt[tx_index], payload, payload_size);
tx[tx_index].length = payload_size;
// End Of Packet, let hardware generate checksum
tx[tx_index].cmd = CMD_EOP | CMD_IFCS;
tx[tx_index].status = 0;
tx_index = (tx_index + 1) % E1000_NUM_TX_DESC;
write_command(E1000_REG_TXDESCTAIL, tx_index);
}
static void init_rx(void) {
// Set physical address of receive FIFO
write_command(E1000_REG_RXDESCLO, rx_phys);
write_command(E1000_REG_RXDESCHI, 0);
write_command(E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct rx_desc));
// Initialize head and tail of receive FIFO
write_command(E1000_REG_RXDESCHEAD, 0);
write_command(E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
// Enable receiving, receive packets of up to 2048, allow receiving broadcast packets
write_command(E1000_REG_RCTRL,
RCTL_EN | RCTL_BSIZE_2048 | RCTL_BAM |
(read_command(E1000_REG_RCTRL)));
}
static void init_tx(void) {
// Set physical address of transmit FIFO
write_command(E1000_REG_TXDESCLO, tx_phys);
write_command(E1000_REG_TXDESCHI, 0);
write_command(E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct tx_desc));
// Initialize head and tail of transmit FIFO
write_command(E1000_REG_TXDESCHEAD, 0);
write_command(E1000_REG_TXDESCTAIL, 0);
// Enable transmitting, Pad Short Packets
write_command(E1000_REG_TCTRL,
TCTL_EN |
TCTL_PSP |
read_command(E1000_REG_TCTRL));
}
static int e1000_init_main(void) {
pci_scan(&find_e1000, -1, &e1000_device_pci);
if (!e1000_device_pci) {
terminal_writestring("No e1000 device found.");
return 1;
}
mem_base = pci_read_field(e1000_device_pci, PCI_BAR0, 4) & 0xFFFFFFF0;
// TODO mark page as cache-disabled
// TODO shrink network buffer size to RCTL_BSIZE_2048
// TODO align to paragraph instead of to page
// We don't do paging, so the virtual address = the physical address
rx = valloc(sizeof(struct rx_desc) * E1000_NUM_RX_DESC + 16, 12);
rx_phys = (uintptr_t) rx;
for (int i = 0; i < E1000_NUM_RX_DESC; i++) {
// Allocate a 2048-sized piece of memory, aligned (so the last 4 bits are 0)
rx_virt[i] = valloc(2048, 4);
rx[i].addr = (uintptr_t) rx_virt[i];
rx[i].status = 0;
}
tx = valloc(sizeof(struct tx_desc) * E1000_NUM_TX_DESC + 16, 12);
tx_phys = (uintptr_t) tx;
for (int i = 0; i < E1000_NUM_TX_DESC; i++) {
tx_virt[i] = valloc(2048, 4);
tx[i].addr = (uintptr_t) tx_virt[i];
tx[i].status = 0;
tx[i].cmd = (1 << 0);
}
// Enable PCI bus mastering
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
command_reg |= (1 << 2);
command_reg |= (1 << 0);
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
eeprom_detect();
terminal_writestring("EEPROM=");
terminal_writeint(has_eeprom, 10);
read_mac();
terminal_writestring(" MAC = ");
terminal_writeint(e1000_mac[0], 16);
terminal_writeint(e1000_mac[1], 16);
terminal_writeint(e1000_mac[2], 16);
terminal_writeint(e1000_mac[3], 16);
terminal_writeint(e1000_mac[4], 16);
terminal_writeint(e1000_mac[5], 16);
terminal_writestring("\n");
write_mac();
init_rx();
init_tx();
int networkstatus = read_command(E1000_REG_STATUS);
terminal_writestring("Network is ");
if (networkstatus) {
terminal_writestring("up!\n");
} else {
terminal_writestring("down :/ \n");
}
return 0;
}
#endif // DRIVERS_NETWORKING_E1000_C

View file

@ -0,0 +1,47 @@
#ifndef DRIVERS_NETWORKING_NETWORK_C
#define DRIVERS_NETWORKING_NETWORK_C
#include "e1000.c"
#include "../../memory.c"
uint8_t* create_packet(uint8_t dest[6], uint8_t src[6], uint8_t type[2], uint8_t* content, int contentlength) {
uint8_t* returnbuffer = alloc(6 + 6 + 2 + contentlength);
memcpy(returnbuffer, dest, 6);
memcpy(returnbuffer + 6, src, 6);
memcpy(returnbuffer + 6 + 6, type, 2);
memcpy(returnbuffer + 6 + 6 + 2, content, contentlength);
return returnbuffer;
}
void network_init() {
uint8_t dest[6] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
uint8_t src[6] = {0x1a, 0x2b, 0x3c, 0x4d, 0x5e, 0x6f};
uint8_t type[2] = {0x69, 0x69};
e1000_init_main();
for (int i = 0; i < 3; i++) {
uint8_t* packet = create_packet(dest, src, type, (uint8_t*) "Zulu Echo Uniform Sierra Whiskey Papa India", 43);
send_packet(packet, 6 + 6 + 2 + 43);
// TODO free(packet)
}
uint8_t* received_packet;
while (1) {
size_t s = receive_packet(&received_packet);
if (s) {
terminal_writeint(s, 10);
terminal_writestring(" received packet \n");
for (size_t i = 0; i < s; i++) {
terminal_putchar(received_packet[i]);
}
// TODO free(*received_packet)
break;
}
}
}
#endif // DRIVERS_NETWORKING_NETWORK_C

196
kernel/drivers/pci/pci.c Normal file
View file

@ -0,0 +1,196 @@
#ifndef DRIVERS_PCI_PCI_C
#define DRIVERS_PCI_PCI_C
typedef void (*pci_func_t)(uint32_t device, uint16_t vendor_id, uint16_t device_id, void * extra);
void pci_scan_bus(pci_func_t f, int type, int bus, void * extra);
#define PCI_VENDOR_ID 0x00 // 2
#define PCI_DEVICE_ID 0x02 // 2
#define PCI_COMMAND 0x04 // 2
#define PCI_STATUS 0x06 // 2
#define PCI_REVISION_ID 0x08 // 1
#define PCI_PROG_IF 0x09 // 1
#define PCI_SUBCLASS 0x0a // 1
#define PCI_CLASS 0x0b // 1
#define PCI_CACHE_LINE_SIZE 0x0c // 1
#define PCI_LATENCY_TIMER 0x0d // 1
#define PCI_HEADER_TYPE 0x0e // 1
#define PCI_BIST 0x0f // 1
#define PCI_BAR0 0x10 // 4
#define PCI_BAR1 0x14 // 4
#define PCI_BAR2 0x18 // 4
#define PCI_BAR3 0x1C // 4
#define PCI_BAR4 0x20 // 4
#define PCI_BAR5 0x24 // 4
#define PCI_INTERRUPT_LINE 0x3C // 1
#define PCI_SECONDARY_BUS 0x19 // 1
#define PCI_HEADER_TYPE_DEVICE 0
#define PCI_HEADER_TYPE_BRIDGE 1
#define PCI_HEADER_TYPE_CARDBUS 2
#define PCI_TYPE_BRIDGE 0x0604
#define PCI_TYPE_SATA 0x0106
#define PCI_ADDRESS_PORT 0xCF8
#define PCI_VALUE_PORT 0xCFC
#define PCI_NONE 0xFFFF
typedef void (*pci_func_t)(uint32_t device, uint16_t vendor_id, uint16_t device_id, void * extra);
static inline int pci_extract_bus(uint32_t device) {
return (uint8_t)((device >> 16));
}
static inline int pci_extract_slot(uint32_t device) {
return (uint8_t)((device >> 8));
}
static inline int pci_extract_func(uint32_t device) {
return (uint8_t)(device);
}
static inline uint32_t pci_get_addr(uint32_t device, int field) {
return 0x80000000 | (pci_extract_bus(device) << 16) | (pci_extract_slot(device) << 11) | (pci_extract_func(device) << 8) | ((field) & 0xFC);
}
static inline uint32_t pci_box_device(int bus, int slot, int func) {
return (uint32_t)((bus << 16) | (slot << 8) | func);
}
void pci_write_field(uint32_t device, int field, int size, uint32_t value) {
outl(PCI_ADDRESS_PORT, pci_get_addr(device, field));
outl(PCI_VALUE_PORT, value);
}
uint32_t pci_read_field(uint32_t device, int field, int size) {
outl(PCI_ADDRESS_PORT, pci_get_addr(device, field));
if (size == 4) {
uint32_t t = inl(PCI_VALUE_PORT);
return t;
} else if (size == 2) {
uint16_t t = inw(PCI_VALUE_PORT + (field & 2));
return t;
} else if (size == 1) {
uint8_t t = inb(PCI_VALUE_PORT + (field & 3));
return t;
}
return 0xFFFF;
}
uint16_t pci_find_type(uint32_t dev) {
return (pci_read_field(dev, PCI_CLASS, 1) << 8) | pci_read_field(dev, PCI_SUBCLASS, 1);
}
void pci_scan_hit(pci_func_t f, uint32_t dev, void * extra) {
int dev_vend = (int)pci_read_field(dev, PCI_VENDOR_ID, 2);
int dev_dvid = (int)pci_read_field(dev, PCI_DEVICE_ID, 2);
f(dev, dev_vend, dev_dvid, extra);
}
void pci_scan_func(pci_func_t f, int type, int bus, int slot, int func, void * extra) {
uint32_t dev = pci_box_device(bus, slot, func);
if (type == -1 || type == pci_find_type(dev)) {
pci_scan_hit(f, dev, extra);
}
if (pci_find_type(dev) == PCI_TYPE_BRIDGE) {
pci_scan_bus(f, type, pci_read_field(dev, PCI_SECONDARY_BUS, 1), extra);
}
}
void pci_scan_slot(pci_func_t f, int type, int bus, int slot, void * extra) {
uint32_t dev = pci_box_device(bus, slot, 0);
if (pci_read_field(dev, PCI_VENDOR_ID, 2) == PCI_NONE) {
return;
}
pci_scan_func(f, type, bus, slot, 0, extra);
if (!pci_read_field(dev, PCI_HEADER_TYPE, 1)) {
return;
}
for (int func = 1; func < 8; func++) {
uint32_t dev = pci_box_device(bus, slot, func);
if (pci_read_field(dev, PCI_VENDOR_ID, 2) != PCI_NONE) {
pci_scan_func(f, type, bus, slot, func, extra);
}
}
}
void pci_scan_bus(pci_func_t f, int type, int bus, void * extra) {
for (int slot = 0; slot < 32; ++slot) {
pci_scan_slot(f, type, bus, slot, extra);
}
}
void pci_scan(pci_func_t f, int type, void * extra) {
if ((pci_read_field(0, PCI_HEADER_TYPE, 1) & 0x80) == 0) {
pci_scan_bus(f,type,0,extra);
return;
}
for (int func = 0; func < 8; ++func) {
uint32_t dev = pci_box_device(0, 0, func);
if (pci_read_field(dev, PCI_VENDOR_ID, 2) != PCI_NONE) {
pci_scan_bus(f, type, func, extra);
} else {
break;
}
}
}
static void find_isa_bridge(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
if (vendorid == 0x8086 && (deviceid == 0x7000 || deviceid == 0x7110)) {
*((uint32_t *)extra) = device;
}
}
static uint32_t pci_isa = 0;
static uint8_t pci_remaps[4] = {0};
void pci_remap(void) {
pci_scan(&find_isa_bridge, -1, &pci_isa);
if (pci_isa) {
for (int i = 0; i < 4; ++i) {
pci_remaps[i] = pci_read_field(pci_isa, 0x60+i, 1);
if (pci_remaps[i] == 0x80) {
pci_remaps[i] = 10 + (i%1);
}
}
uint32_t out = 0;
memcpy(&out, &pci_remaps, 4);
pci_write_field(pci_isa, 0x60, 4, out);
}
}
int pci_get_interrupt(uint32_t device) {
if (pci_isa) {
uint32_t irq_pin = pci_read_field(device, 0x3D, 1);
if (irq_pin == 0) {
return pci_read_field(device, PCI_INTERRUPT_LINE, 1);
}
int pirq = (irq_pin + pci_extract_slot(device) - 2) % 4;
int int_line = pci_read_field(device, PCI_INTERRUPT_LINE, 1);
if (pci_remaps[pirq] >= 0x80) {
if (int_line == 0xFF) {
int_line = 10;
pci_write_field(device, PCI_INTERRUPT_LINE, 1, int_line);
}
pci_remaps[pirq] = int_line;
uint32_t out = 0;
memcpy(&out, &pci_remaps, 4);
pci_write_field(pci_isa, 0x60, 4, out);
return int_line;
}
pci_write_field(device, PCI_INTERRUPT_LINE, 1, pci_remaps[pirq]);
return pci_remaps[pirq];
} else {
return pci_read_field(device, PCI_INTERRUPT_LINE, 1);
}
}
#endif // DRIVERS_PCI_PCI_C

View file

@ -31,6 +31,26 @@ static inline uint8_t inb(uint16_t port) {
return ret;
}
static uint16_t inw(uint16_t port) {
uint16_t ret;
asm volatile ("inw %1, %0" : "=a" (ret) : "dN" (port));
return ret;
}
static void outw(uint16_t port, uint16_t val) {
asm volatile ("outw %0, %1" : : "a" (val), "dN" (port) );
}
static uint32_t inl(uint16_t port) {
uint32_t ret;
asm volatile ("inl %%dx, %%eax" : "=a" (ret) : "dN" (port));
return ret;
}
static void outl(uint16_t port, uint32_t val) {
asm volatile ("outl %%eax, %%dx" : : "dN" (port), "a" (val));
}
static inline void lidt(void* base, uint16_t size)
{ // This function works in 32 and 64bit mode
struct {
@ -61,4 +81,20 @@ static inline void sgdt(gdt_desc* ret) {
asm volatile ("sgdt %0" : : "m"(*ret) : "memory");
}
static void * memcpy(void * restrict dest, const void * restrict src, long n) {
asm volatile("cld; rep movsb"
: "=c"((int){0})
: "D"(dest), "S"(src), "c"(n)
: "flags", "memory");
return dest;
}
static void * memset(void * dest, int c, long n) {
asm volatile("cld; rep stosb"
: "=c"((int){0})
: "D"(dest), "a"(c), "c"(n)
: "flags", "memory");
return dest;
}
#endif //INLINE ASM_C

View file

@ -37,7 +37,7 @@ void interrupt_init() {
/* ICW2 - remap offset address of IDT */
outb(0x21, 0x20);
outb(0xA1, 0x82);
outb(0xA1, 0x28);
/* ICW3 - setup cascading */
outb(0x21, 0x00);
@ -92,6 +92,7 @@ void interrupt_init() {
lidt(IDT, size);
keyboard_init();
}
#endif //INTERRUPTS_C

View file

@ -16,6 +16,7 @@
#include "memory.c"
#include "interrupts.c"
#include "shell.c"
#include "network.c"
static inline bool are_interrupts_enabled() {
unsigned long flags;
@ -60,6 +61,7 @@ void kernel_main(void)
terminal_writestring((are_interrupts_enabled())? "Interrupts!\n": "No interrupts :(\n");
interrupt_init();
network_init();
for(;;) {
shell_step();

1
kernel/network.c Normal file
View file

@ -0,0 +1 @@
#include "drivers/networking/network.c"

111
kernel/util/ringbuffer.c Normal file
View file

@ -0,0 +1,111 @@
#ifndef RINGBUFFER_C
#define RINGBUFFER_C
#include "ringbuffer.h"
#include "../memory.c"
#define ERROR(msg) \
do { \
/* TODO Do something error-ish */ \
} while(0)
#define ASSERT_NONNULL_ARG(argument) { \
if (argument == NULL) { \
ERROR(__func__ " got NULL for argument '" #argument "'"); \
} \
}
struct ringbuffer* rbfr_create(const int capacity, void (*const destroy_element)(void*)) {
ASSERT_NONNULL_ARG(destroy_element);
struct ringbuffer* const this = alloc(sizeof (struct ringbuffer));
this->buffer = alloc(capacity * sizeof (void*));
this->buffer_n = capacity;
this->size = 0;
this->head = 0;
this->destroy_element = destroy_element;
return this;
}
void rbfr_destroy(struct ringbuffer* const this) {
ASSERT_NONNULL_ARG(this);
rbfr_clear(this);
free(this->buffer);
this->buffer = NULL;
free(this);
}
int rbfr_size(const struct ringbuffer* const this) {
ASSERT_NONNULL_ARG(this);
return this->size;
}
int rbfr_capacity(const struct ringbuffer* this) {
ASSERT_NONNULL_ARG(this);
return this->buffer_n;
}
void rbfr_enqueue(struct ringbuffer* this, void* const element) {
ASSERT_NONNULL_ARG(this);
if (this->buffer_n == 0) {
return;
}
int index = this->head + this->size;
if (index >= this->buffer_n) {
index -= this->buffer_n;
}
this->buffer[index] = element;
if (this->size < this->buffer_n) {
this->size++;
} else {
this->head++;
}
return;
}
bool rbfr_peek(const struct ringbuffer *const this, void** element) {
ASSERT_NONNULL_ARG(this);
ASSERT_NONNULL_ARG(element);
if (this->size == 0) {
return false;
}
*element = this->buffer[this->head];
return true;
}
bool rbfr_dequeue(struct ringbuffer *const this, void** element) {
ASSERT_NONNULL_ARG(this);
ASSERT_NONNULL_ARG(element);
if (!rbfr_peek(this, element)) {
return false;
}
this->size--;
this->head++;
if (this->head >= this->buffer_n) {
this->head = 0;
}
return true;
}
void rbfr_clear(struct ringbuffer* this) {
ASSERT_NONNULL_ARG(this);
void* element;
while (rbfr_dequeue(this, &element)) {
this->destroy_element(element);
}
}
#endif // RINGBUFFER_C

80
kernel/util/ringbuffer.h Normal file
View file

@ -0,0 +1,80 @@
#ifndef RINGBUFFER_H
#define RINGBUFFER_H
#include <stdbool.h>
// Data layout: ↓head
// buffer = [ 4, undef, undef, 1, 2, 3 ]
// where 1 is the oldest element and 4 the newest.
// Enqueue adds the element after 4 and dequeue removes 1.
struct ringbuffer {
int head;
int size;
void (*destroy_element)(void*);
int buffer_n;
void** buffer;
};
/**
* Allocate memory and initialize a circular queue with given capacity
*
* A ringbuffer, or circular queue, is like a regular queue, but if it's full when you add an
* element, it displaces the oldest element to make place. As such, adding elements never fails.
*
* Memory: this function allocates memory for the queue (free it with rbfr_destroy). The
* destroy_element function user has to provide must free an element's memory.
*
* @param capacity maximum amount of elements to accept without dropping oldest
* @param destroy_element function called when the queue has to drop an element, with the element
* passed as argument
* @return pointer to ringbuffer
*/
struct ringbuffer* rbfr_create(const int capacity, void (*destroy_element)(void*));
/**
* Free the queue's memory
*
* Memory: all elements still present are freed using the destroy_element function provided by user
* in rbfr_create.
*/
void rbfr_destroy(struct ringbuffer* this);
int rbfr_size(const struct ringbuffer* this);
int rbfr_capacity(const struct ringbuffer* this);
/**
* Add one element at the end
*
* If the queue is full (if size==capacity), the oldest element is removed to make place. As such,
* this operation does not fail if the queue is full.
*
* Memory: if an element has to be removed to make place, it is freed using the destroy_element
* function provided by user in rbfr_create.
*/
void rbfr_enqueue(struct ringbuffer* this, void* element);
/**
* Return first element without removing it from the buffer
*
* Memory: do not free the element's memory, it still lives in the ringbuffer.
*/
bool rbfr_peek(const struct ringbuffer* this, void** element);
/**
* Remove first element and return it
*
* Memory: user is responsible for freeing the element's memory.
*/
bool rbfr_dequeue(struct ringbuffer* this, void** element);
/**
* Remove all elements
*
* Memory: this function destroys elements using the destroy_element function provided by user in
* rbfr_create.
*/
void rbfr_clear(struct ringbuffer* this);
#endif // RINGBUFFER_H