obus/lib/obus_module.cpp

241 lines
6.6 KiB
C++
Raw Normal View History

2020-08-26 21:13:16 +02:00
#include "obus_can.h"
#include "obus_module.h"
#define PIN_LED_RED 4
#define PIN_LED_GREEN 7
2020-09-07 18:21:51 +02:00
#define BLINK_DELAY_SLOW 1000
#define BLINK_DELAY_FAST 300
#define MAX_TIME_BETWEEN_CALLS 100
2020-09-07 18:21:51 +02:00
#define COLOR_OFF ((struct color) {false, false})
#define COLOR_RED ((struct color) {true, false})
#define COLOR_GREEN ((struct color) {false, true})
#define COLOR_YELLOW ((struct color) {true, true})
2020-08-26 21:13:16 +02:00
2020-09-07 18:21:51 +02:00
namespace obus_module {
2020-08-26 21:13:16 +02:00
struct obus_can::module this_module;
uint8_t strike_count;
2020-08-27 05:30:22 +02:00
bool active;
uint32_t next_loop_call_deadline;
2020-08-26 21:13:16 +02:00
2020-09-07 18:21:51 +02:00
// Current LED status
struct color { bool red; bool green; };
struct color led_color;
2020-09-09 18:30:44 +02:00
// Keeps track of whether the LED is currently lit, when a blink pattern is active
bool blink_led_lit = false;
2020-09-07 18:21:51 +02:00
int blink_delay = 0;
unsigned long blink_next_time = 0;
2020-09-09 18:30:44 +02:00
uint32_t led_reset_time;
2020-09-07 18:21:51 +02:00
2020-09-09 18:30:44 +02:00
void _setLed(struct color color) {
led_color = color;
blink_delay = 0;
led_reset_time = 0;
digitalWrite(PIN_LED_RED, color.red ? HIGH : LOW);
digitalWrite(PIN_LED_GREEN, color.green ? HIGH : LOW);
2020-09-09 18:30:44 +02:00
}
void _ledLoop() {
// Check if we need to turn the LED back off, e.g. to reset the strike blinker
if (led_reset_time && millis() > led_reset_time) {
if (active) {
_setLed(COLOR_YELLOW);
} else {
_setLed(COLOR_OFF);
}
2020-09-09 18:30:44 +02:00
led_reset_time = 0;
}
// Update blink of status LED
2020-09-07 18:21:51 +02:00
if (blink_delay && millis() > blink_next_time) {
2020-09-09 18:30:44 +02:00
blink_led_lit = !blink_led_lit;
if (blink_led_lit) {
digitalWrite(PIN_LED_RED, led_color.red ? HIGH : LOW);
digitalWrite(PIN_LED_GREEN, led_color.green ? HIGH : LOW);
2020-09-07 18:21:51 +02:00
} else {
digitalWrite(PIN_LED_RED, false);
digitalWrite(PIN_LED_GREEN, false);
2020-09-07 18:21:51 +02:00
}
2020-09-08 00:08:13 +02:00
blink_next_time = millis() + blink_delay;
2020-09-07 18:21:51 +02:00
}
}
void _setLedBlink(struct color color, uint16_t delay) {
led_color = color;
2020-09-09 18:30:44 +02:00
blink_led_lit = false;
2020-09-07 18:21:51 +02:00
blink_delay = delay;
blink_next_time = millis();
2020-09-09 18:30:44 +02:00
led_reset_time = 0;
2020-09-07 18:21:51 +02:00
2020-09-09 18:30:44 +02:00
_ledLoop();
2020-09-07 18:21:51 +02:00
}
void blink_error(String message) {
bool blink = false;
while (true) {
digitalWrite(PIN_LED_RED, blink);
digitalWrite(PIN_LED_GREEN, blink);
blink = !blink;
delay(blink ? BLINK_DELAY_SLOW : BLINK_DELAY_FAST);
Serial.println(message);
}
}
2020-09-07 18:21:51 +02:00
void _resetState() {
2020-08-26 21:13:16 +02:00
strike_count = 0;
active = false;
next_loop_call_deadline = 0;
2020-09-07 18:21:51 +02:00
if (this_module.type == OBUS_TYPE_PUZZLE || this_module.type == OBUS_TYPE_NEEDY) {
pinMode(PIN_LED_RED, OUTPUT);
pinMode(PIN_LED_GREEN, OUTPUT);
2020-09-07 18:21:51 +02:00
_setLedBlink(COLOR_GREEN, BLINK_DELAY_SLOW);
}
2020-08-26 21:13:16 +02:00
}
void setup(uint8_t type, uint8_t id) {
this_module.type = type;
this_module.id = id;
_resetState();
if (!obus_can::init()) {
blink_error(F("CAN init failed"));
}
}
2021-02-01 15:33:14 +01:00
void empty_callback_info(uint8_t info_id, uint8_t infomessage[7]) {
// Mark arguments as not used
(void)info_id;
(void)infomessage;
}
void empty_callback_state(uint32_t time_left, uint8_t strikes, uint8_t max_strikes, uint8_t puzzle_modules_left) {
2021-02-01 15:33:14 +01:00
// Mark arguments as not used
(void)time_left;
(void)strikes;
(void)max_strikes;
(void)puzzle_modules_left;
2021-02-01 15:33:14 +01:00
}
bool loopPuzzle(obus_can::message* message, void (*callback_game_start)(uint8_t puzzle_modules), void (*callback_game_stop)(), void (*callback_info)(uint8_t info_id, uint8_t infomessage[7]), void (*callback_state)(uint32_t time_left, uint8_t strikes, uint8_t max_strikes, uint8_t puzzle_modules_left)) {
// TODO this can be more efficient by only enabling error interrupts and
// reacting to the interrupt instead of checking if the flag is set in a loop
2021-01-30 13:51:43 +01:00
// We will need to fork our CAN library for this, because the needed functions are private.
// Also, we can't do this by default, because the INT pin is normally not connected to the board
if (obus_can::is_error_condition()) {
blink_error(F("E CAN error"));
}
2020-09-07 18:21:51 +02:00
// Force the user of the library to periodically call loop
if (next_loop_call_deadline != 0 && millis() > next_loop_call_deadline) {
blink_error(F("E Missed loop deadline"));
}
next_loop_call_deadline = millis() + MAX_TIME_BETWEEN_CALLS;
2020-09-07 18:21:51 +02:00
2021-02-01 15:33:14 +01:00
bool received_message = false;
2020-08-27 04:02:10 +02:00
if (obus_can::receive(message)) {
2021-02-01 15:33:14 +01:00
received_message = true;
2020-10-22 21:16:12 +02:00
if (is_from_controller(message->from)) {
switch (message->msg_type) {
case OBUS_MSGTYPE_C_GAMESTART:
active = true;
_setLed(COLOR_YELLOW);
callback_game_start(message->gamestatus.puzzle_modules_left);
break;
case OBUS_MSGTYPE_C_HELLO:
_resetState();
obus_can::send_m_hello(this_module);
break;
case OBUS_MSGTYPE_C_SOLVED:
case OBUS_MSGTYPE_C_TIMEOUT:
case OBUS_MSGTYPE_C_STRIKEOUT:
active = false;
_setLed(COLOR_OFF);
callback_game_stop();
break;
case OBUS_MSGTYPE_C_ACK:
break;
case OBUS_MSGTYPE_C_STATE:
callback_state(message->gamestatus.time_left, message->gamestatus.strikes, message->gamestatus.max_strikes, message->gamestatus.puzzle_modules_left);
break;
2021-02-03 01:25:03 +01:00
case OBUS_MSGTYPE_C_INFOSTART:
2022-01-19 21:33:41 +01:00
// randomSeed has no effect when called with 0 as seed, so we use
// a fallback value that is unlikely to collide with other frequently used seeds
randomSeed(message->infostart.seed ? message->infostart.seed : 0xFFFFFFFF);
2021-02-03 01:25:03 +01:00
break;
default:
break;
}
2021-01-30 13:51:43 +01:00
} else if (message->from.type == OBUS_TYPE_INFO) {
uint8_t infobuffer[7] = {0};
memcpy(infobuffer, message->infomessage.data, message->infomessage.len);
callback_info(message->from.id, infobuffer);
}
}
2020-09-07 18:21:51 +02:00
2020-09-09 18:30:44 +02:00
_ledLoop();
2020-09-07 18:21:51 +02:00
2021-02-01 15:33:14 +01:00
return received_message;
2020-08-27 05:30:22 +02:00
}
2020-08-26 21:13:16 +02:00
bool loopNeedy(obus_can::message* message, void (*callback_game_start)(uint8_t puzzle_modules), void (*callback_game_stop)(), void (*callback_info)(uint8_t info_id, uint8_t infomessage[7]), void (*callback_state)(uint32_t time_left, uint8_t strikes, uint8_t max_strikes, uint8_t puzzle_modules_left)) {
2020-08-27 05:30:22 +02:00
// For now this is the same function
2021-02-01 15:33:14 +01:00
return loopPuzzle(message, callback_game_start, callback_game_stop, callback_info, callback_state);
}
bool loopInfo(obus_can::message* message, int (*info_generator)(uint8_t*)) {
bool interesting_message = false;
if (obus_can::receive(message)) {
2020-10-22 21:16:12 +02:00
if (is_from_controller(message->from)) {
switch (message->msg_type) {
case OBUS_MSGTYPE_C_INFOSTART:
{
2021-02-03 01:25:03 +01:00
randomSeed(message->infostart.seed);
uint8_t info_message[OBUS_PAYLD_INFO_MAXLEN];
int len = info_generator(info_message);
obus_can::send_i_infomessage(this_module, info_message, len);
}
break;
case OBUS_MSGTYPE_C_STATE:
interesting_message = true;
break;
default:
break;
}
}
}
return interesting_message;
2020-08-26 21:13:16 +02:00
}
void strike() {
2020-08-27 05:30:22 +02:00
if (!active) {
return;
}
2020-08-26 21:13:16 +02:00
strike_count++;
2020-09-09 18:30:44 +02:00
_setLedBlink(COLOR_RED, BLINK_DELAY_FAST);
led_reset_time = millis() + 2000;
2020-08-26 21:13:16 +02:00
obus_can::send_m_strike(this_module, strike_count);
}
void solve() {
2020-08-27 05:30:22 +02:00
if (!active) {
return;
}
2020-08-26 21:13:16 +02:00
obus_can::send_m_solved(this_module);
2020-08-27 05:30:22 +02:00
active = false;
2020-09-09 18:30:44 +02:00
_setLed(COLOR_GREEN);
2020-08-27 05:30:22 +02:00
}
bool is_active() {
return active;
2020-08-26 21:13:16 +02:00
}
}